Publications by authors named "Minhwan Jeon"

In this study, we suggest a polarity-selective in-situ thermal etching and re-growth process for the fabrication of high quality Al terminated AIN epilayers by high temperature metalorganic chemical vapor deposition. Mixed-polar AIN layers grown on a thin (5 nm) buffer layer at a high temperature (950 degrees C) exhibited high crystalline quality. Surface morphologies of in-situ thermally etched AIN layers depended on the grain size and distance between grains.

View Article and Find Full Text PDF

This study investigates the crystallographic polarity transition of AIN layers grown by high temperature metalorganic chemical vapor deposition (HT-MOCVD), with varying trimethylaluminum (TMAI) pre-flow rates. AIN layers grown without TMAI pre-flow had a mixed polarity, consisting of Al- and N-polarity, and exhibited a rough surface. With an increasing rate of TMAI pre-flow, the AIN layer was changed to an Al-polarity, with a smooth surface morphology.

View Article and Find Full Text PDF

By plasma-enhanced chemical vapor deposition, a molybdenum disulfide (MoS2 ) thin film is synthesized directly on a wafer-scale plastic substrate at below 300 °C. The carrier mobility of the films is 3.74 cm(2) V(-1) s(-1) .

View Article and Find Full Text PDF

Two-dimensional (2D) metal dichalcogenides like molybdenum disulfide (MoS2) may provide a pathway to high-mobility channel materials that are needed for beyond-complementary metal-oxide-semiconductor (CMOS) devices. Controlling the thickness of these materials at the atomic level will be a key factor in the future development of MoS2 devices. In this study, we propose a layer-by-layer removal of MoS2 using the atomic layer etching (ALET) that is composed of the cyclic processing of chlorine (Cl)-radical adsorption and argon (Ar)(+) ion-beam desorption.

View Article and Find Full Text PDF

We have developed a reversed-phase high-performance liquid chromatography-pulsed amperometric detection (RP-HPLC-PAD) method for the detection of albiflorin and paeoniflorin in Paeoniae Radix and Wu-ji-san. Albiflorin and paeoniflorin were completely separated using 10% acetonitrile in 5mM sodium phosphate buffer (pH 3.0) as an eluent and detected by PAD under alkaline conditions after using a post-column delivery system.

View Article and Find Full Text PDF