Publications by authors named "Minhuck Park"

In this study, we developed a low-cost, high-precision vehicle navigation system for deep urban multipath environments using time-differenced carrier phase (TDCP) measurements. Although many studies are being conducted to navigate autonomous vehicles using the global positioning system (GPS), it is difficult to obtain accurate navigation solutions due to multipath errors in urban environments. Low-cost GPS receivers that determine the solution based on pseudorange measurements are vulnerable to multipath errors.

View Article and Find Full Text PDF

In this study, we combined a time-differenced carrier phase (TDCP)-based global positioning system (GPS) with an inertial navigation system (INS) to form an integrated system that appropriately considers noise correlation. The TDCP-based navigation system can determine positions precisely based on high-quality carrier phase measurements without difficulty resolving integer ambiguity. Because the TDCP system contains current and previous information that violate the format of the conventional Kalman filter, a delayed state filter that considers the correlation between process and measurement noise is utilized to improve the accuracy and reliability of the TDCP-based GPS/INS.

View Article and Find Full Text PDF

When a user receiver is tracking an authentic signal, a spoofing signal can be transmitted to the user antenna. The question is under what conditions does the tracking point of the receiver move from the authentic signal to the spoofing signal? In this study, we develop a spoofing process equation (SPE) that can be used to calculate the tracking point of the delay lock loop (DLL) at regular chip intervals for the entire spoofing process. The condition for a successful spoofing signal is analyzed using the SPE.

View Article and Find Full Text PDF