Biomineralization of enzymes inside rigid metal-organic frameworks (MOFs) is appealing due to its biocompatibility and simplicity. However, this strategy has hitherto been limited to microporous MOFs, leading to low apparent enzymatic activity. In this study, polysaccharide sodium alginate is introduced during the biomineralization of enzymes in zeolitic imidazolate frameworks (ZIFs) to competitively coordinate with metal ions, which endows the encapsulated enzyme with a 7-fold higher activity than that in microporous ZIFs.
View Article and Find Full Text PDFMicrobial biosynthesis has become the leading commercial approach for large-scale production of terpenoids, a valuable class of natural products. Enhancing terpenoid production, however, requires complex modifications on the host organism. Recently, a two-step isopentenol utilization (IU) pathway relying solely on ATP as the cofactor has been proposed as an alternative to the mevalonate (MVA) pathway, streamlining the synthesis of the common terpenoid precursors.
View Article and Find Full Text PDFIn response to the environmental pollution caused by non-degradable and non-recyclable plastic packaging films (PPFs) and the resulting health concerns due to the migration of microplastics into food, the development of biodegradable food packaging films has gained great attention. Chitosan has been extensively utilized in the food industry owing to its abundant availability, exceptional biocompatibility, degradability, and antimicrobial properties. Chitosan-essential oil composite films (CEOs) represent a promising avenue to replace conventional PPFs.
View Article and Find Full Text PDFIn this study, an active and intelligent nanofilm for monitoring and maintaining the freshness of pork was developed using ethyl cellulose/gelatin matrix through electrospinning, with the addition of natural purple sweet potato anthocyanin. The nanofilm exhibited discernible color variations in response to pH changes, and it demonstrated a higher sensitivity towards volatile ammonia compared with casting film. Notably, the experimental findings regarding the wettability and pH response performance indicated that the water contact angle between 70° and 85° was more favorable for the smart response of pH sensitivity.
View Article and Find Full Text PDFThe aim of this study was to investigate the effects of acetylation modification on the structural, interfacial and emulsifying properties of Millettia speciosa Champ polysaccharide (MSCP). Besides, the influence of acetylation modification on the encapsulation properties of polysaccharide-based emulsion was also explored. Results indicated that modification resulted in a prominent reduction in molecular weight of MSCP and the interfacial layer thickness formed by acetylated MSCP (AC-MSCP) was also decreased, but the adsorption rate and ability of AC-MSCP to reduce interfacial tension were improved.
View Article and Find Full Text PDFIn this study, we used traditional laboratory methods, bioinformatics, and cellular models to screen novel ACE inhibitory (ACEI) peptides with strong ACEI activity, moderate absorption rates, and multiple targets from bovine colostrum immunoglobulin G (IgG). The purified fraction of the compound proteinase hydrolysate of IgG showed good ACEI activity. After nano-UPLC-MS/MS identification and analysis, eight peptides were synthesized and verified.
View Article and Find Full Text PDFRecently, catalytic valorization of biomass-derived furans has received growing interest. 5-Aminomethyl-2-furancarboxylic acid (AMFC), a furan amino acid, holds great promise in the aeras of polymer and pharmaceutical, but its synthesis remains limited. In this work, we report a chemobiocatalytic route toward AMFC by combining laccase-TEMPO system and recombinant Escherichia coli (named E.
View Article and Find Full Text PDFAn iron-incorporated Zn-MOF catalyst Zn-bpydc·Fe was fabricated for the oxidative cleavage of -anethole to -anisaldehyde under facile conditions, under 1 atm of O. The Fe coordinated bipyridine serves as the catalytically active center inside the structural skeleton of Zn-MOFs. This work affords a new avenue for the mild oxidation of olefins.
View Article and Find Full Text PDFEnzymes achieve high catalytic activity with their elaborate arrangements of amino acid residues in confined optimized spaces. Nevertheless, when exposed to complicated environmental implementation scenarios, including high acidity, organic solvent and high ionic strength, enzymes exhibit low operational stability and poor activity. Here, we report a metal-organic frameworks (MOFs)-based artificial enzyme system via second coordination sphere engineering to achieve high hydrolytic activity under mild conditions.
View Article and Find Full Text PDFPesticide residues have raised considerable concern about environmental health and food safety. Despite a great advance in enzymatic sensors for pesticide detection, the intrinsic fragility of native enzyme and possible fake results due to single mode signal have hindered its wide application. Here, a novel dual-mode sensor is reported for organophosphorus pesticide detection by using metal-organic framework (MOF) nanozyme NH-CuBDC as sensing element.
View Article and Find Full Text PDFBackground: Lactobacillus species in gut microbiota shows great promise in alleviation of metabolic diseases. However, little is known about the molecular mechanism of how Lactobacillus interacts with metabolites in circulation. Here, using high nucleoside intake to induce hyperuricemia in mice, we investigated the improvement in systemic urate metabolism by oral administration of L.
View Article and Find Full Text PDFIn the study, monodispersed silver nanoparticles (AgNPs) with an average diameter of 9.57 nm were efficiently and controllably biosynthesized by a reductase from DO7 only in the presence of β-NADPH and polyvinyl pyrrolidone (PVP). The reductase responsible for AgNP formation in DO7 was further confirmed as 1,4-α-glucosidase.
View Article and Find Full Text PDFAn acid polysaccharide, named HP, was produced by endophytic Penicillium javanicum MSC-R1 isolated from southern medicine Millettia speciosa Champ. The molecular weight of HP was 37.8 kDa and consisted of Ara f, Galр, Glcр, Manр, and GlcрA with a molar ratio of 1.
View Article and Find Full Text PDFBackground: Great efforts have been made to improve the oral bioaccessibility of lipophilic ingredients with multi-functionalities. Achieving intestinal delivery of lipophilic ingredients and their encapsulation in micelles composed of bile salts and lipid hydrolysates (i.e.
View Article and Find Full Text PDFAmmonia lyases have great application potential in food and pharmaceuticals owing to their unique ammonia addition reaction and atom economy. A novel methylaspartate ammonia-lyase, EcMAL, from E. coli O157:H7 showed high catalytic activity.
View Article and Find Full Text PDFIn this study, a natural antioxidant emulsifier, Millettia speciosa Champ polysaccharide conjugates (MSC-PC), was used for fabricating oil-in-water emulsion, and the influences of MSC-PC on β-carotene stability and bioaccessibility were studied. Results suggested that MSC-PC stabilized emulsion exhibited excellent resistance to a wide range of salt levels (0-500 mM of Na), thermal treatments (50-90 °C) and pH values (3.0-11.
View Article and Find Full Text PDFPoly(lactic acid), also abbreviated as PLA, is a promising biopolymer for food packaging owing to its environmental-friendly characteristic and desirable physical properties. Electrospinning technology makes the production of PLA-based nanomaterials available with expected structures and enhanced barrier, mechanical, and thermal properties; especially, the facile process produces a high encapsulation efficiency and controlled release of bioactive agents for the purpose of extending the shelf life and promoting the quality of foodstuffs. In this study, different types of electrospinning techniques used for the preparation of PLA-based nanofibers are summarized, and the enhanced properties of which are also described.
View Article and Find Full Text PDFAdvanced glycation end-products (AGEs) are a chemically heterogeneous set of modifications widely found in processed foods. Due to uncertain bioavailability, dietary AGEs regulate energy homeostasis through mechanisms that largely remain unclear. In this study, selective transmembrane transport of AGEs with different modification types from glycated β-casein digest were identified and compared.
View Article and Find Full Text PDFNanozyme with intrinsic enzyme-like activity has emerged as favorite artificial catalyst during recent years. However, current nanozymes are mainly limited to inorganic-derived nanomaterials, while biomolecule-sourced nanozyme (bionanozyme) are rarely reported. Herein, inspired by the basic structure of natural hydrolase family, we constructed 3 oligopeptide-based bionanozymes with intrinsic hydrolase-like activity by implementing zinc induced self-assembly of histidine-rich heptapeptides.
View Article and Find Full Text PDFScope: Epidemiologic studies indicate significant contributions of thermally processed diets to the risk for diabetes and its related renal complications, but the mechanisms relating diet to disease remain unclear. This study evaluates the effects of the diet differ only in the content of advanced glycation end-products (AGEs) on early diabetes in Lepr mice.
Methods And Results: High AGEs diet (60 mg CML per kg protein) is fed to mice for 8 weeks.
Crit Rev Food Sci Nutr
March 2024
Members of are among the first microbes to colonize the human intestine naturally, their abundance and diversity in the colon are closely related to host health. Recently, the gut microbiota has been gradually proven to be crucial mediators of various metabolic processes between the external environment and the host. Therefore, the health-promoting benefits of spp.
View Article and Find Full Text PDFIn this study, three kinds of Maillard reaction products (MRPs) have been, for the first time, successfully prepared by conjugating soy protein isolate (SPI) with isomaltooligosaccharide, xylooligosaccharide, or galactooligosaccharide at 80 °C for 30 or 60 min and applied for the construction of () microcapsules. The results showed that MRPs exhibited enhanced antioxidative activities compared with their physically mixed counterparts. The digested MRPs displayed excellent resistance to pathogenic bacteria and promoted the growth of .
View Article and Find Full Text PDFEnzymatic asymmetric amination addition is seen as a promising approach for synthesizing amine derivatives, especially unnatural amino acids, which are valuable precursors to fine chemicals and drugs. Despite the broad substrate spectrum of methylaspartate lyase (MAL), some bulky substrates, such as caffeic acid, cannot be effectively accepted. Herein, we report a group of variants structurally derived from Escherichia coli O157:H7 MAL (EcMAL).
View Article and Find Full Text PDFBackground: Chiral furfuryl alcohols are important precursors for the synthesis of valuable functionalized pyranones such as the rare sugar L-rednose. However, the synthesis of enantiopure chiral biobased furfuryl alcohols remains scarce. In this work, we present a chemoenzymatic route toward enantiopure nitrogen-containing (R)- and (S)-3-acetamido-5-(1-hydroxylethyl)furan (3A5HEF) from chitin-derived N-acetyl-D-glucosamine (NAG).
View Article and Find Full Text PDF