Frequent use of pesticides results in the release of large quantities of their residues in the environment, raising various concerns for humans and the ecosystem. This work introduces a simple and cost-effective method for removal atrazine pesticide residue (APR) from agricultural wastewater using Cu doped-ZnO photocatalyst (Cu-ZnO). The modification of ZnO with Cu significantly improved its optical and photoelectrochemical properties, with the band gap narrowing from 3.
View Article and Find Full Text PDFJ Environ Sci Health B
December 2024
This study explores the enhanced photocatalytic performance of ZnO nanorods (ZnO-R) for degrading the carbaryl pesticide (CB) in wastewater. For comparison, commercial ZnO (ZnO-C) was used to evaluate the differences in the photocatalytic decomposition of CB between ZnO-R and ZnO-C. The results regarding the material properties demonstrated that ZnO-R enhances CB removal performance due to its unique rod shape, which extends light absorption and improves electron-hole separation.
View Article and Find Full Text PDFRecently, the hazardous effects of antibiotic micropollutants on the environment and human health have become a major concern. To address this challenge, semiconductor-based photocatalysis has emerged as a promising solution for environmental remediation. Our study has developed BiWO/g-CN (BWCN) photocatalyst with unique characteristics such as reactive surface sites, enhanced charge transfer efficiency, and accelerated separation of photogenerated electron-hole pairs.
View Article and Find Full Text PDFThis study investigates the removal of amoxicillin micropollutants (AM) from hospital wastewater using CoMoO-modified graphitic carbon nitride (CMO/gCN). Consequently, CMO/gCN exhibits notable improvements in visible light absorption and electron-hole separation rates compared to unmodified gCN. Besides, CMO/gCN significantly enhances the removal efficiency of AM, attaining an impressive 96.
View Article and Find Full Text PDFThe escalating global industrial expansion has led to the extensive release of organic compounds into water bodies, resulting in substantial pollution and posing severe threats to both human health and the ecosystem. Among common micropollutants, bisphenol A (MP-BA) has emerged as a significant endocrine-disrupting chemical with potential adverse effects on human health and the environment. This study aims to develop an efficient photocatalyst, specifically by incorporating palladium-doped graphitic carbon nitride (Pd@GCN), to eliminate MP-BA pollutants present in industrial wastewater.
View Article and Find Full Text PDFAerogels are becoming a promising platform to fabricate photothermal materials for use in solar steam generation (SSG), which have remarkable application potential in solar desalination, due to their excellent thermal management, salt resistance, and considerable water evaporation rate. In this work, a novel photothermal material is fabricated by forming a suspension between sugarcane bagasse fibers (SBF) and poly(vinyl alcohol), tannic acid (TA), and Fe solutions via hydrogen bonds of hydroxyl groups. After freeze drying, the fabricated SBF aerogel-based photothermal (SBFAP) material possesses a 3D interconnected porous microstructure, which could enhance water transportation ability, reduce thermal conductivity, and quickly dissolve salt crystals on the SBFAP surface.
View Article and Find Full Text PDFThis work developed an easy method to utilize corn straw (CS) waste for sustainable development and reduce the volume of waste volume as well as bring value-added. The magnetic adsorbent was prepared by loading FeO onto biochar derived from corn straw (Fe@CSBC), then used for capturing Cr (VI) in groundwater and wastewater samples. The characterization of adsorbents showed that Fe3O4 was successfully loaded on corn straw biochar (CSBC) and contributed to the improvement of the surface area, and surface functional groups like Fe-O, Fe-OOH, CO, and O-H.
View Article and Find Full Text PDFCiprofloxacin antibiotic (CIP) is one of the antibiotics with the highest rate of antibiotic resistance, if used and managed improperly, can have a negative impact on the ecosystem. In this research, ZnO modified g-CN photocatalyst was prepared and applied for the decomposition of CIP antibiotic compounds in water. The removal performance of CIP by using ZnO/g-CN reached 93.
View Article and Find Full Text PDFIn this work, alginate-modified biochar derived from rice husk waste was synthesized using a simple process. The modified biochar (MBC) and rice husk biochar (RhBC) were investigated for removing Pb (II) ions in wastewater. The BET result displayed significantly improved specific surface area of MBC up to 120 m/g along with a total pore volume of 0.
View Article and Find Full Text PDFDesalination by solar steam generation (SSG) system is a green technology to produce pure water, which can address the issue of water scarcity. A novel photothermal material for the SSG system was fabricated by immersing bacterial cellulose (BC) sequentially into tannic acid (TA) and iron(iii) (Fe) solutions. Surface analysis of the resulting BC-TA-Fe (BTF) material showed that coordination nanocomplexes between Fe and hydroxyl groups of TA were formed on the surface of cellulose nanofibers.
View Article and Find Full Text PDFIn this study, we firstly aimed to use Nb as dopant to dope into the TiO lattice in order to narrow band gap energy or enhance photocatalytic activity of the Nb-TiO. Then, the prepared Nb-TiO was combined with g-CN to establish Nb-TiO/g-CN direct Z-scheme system for superior reduction of CO into valuable fuels even under visible light. The obtained results indicated that the band gap energy of the Nb-TiO (2.
View Article and Find Full Text PDF