Publications by authors named "Minh-Tuan Nguyen-Khac"

Casein kinase II contributes to the growth and survival of malignant gliomas and attracts increasing attention as a therapeutic target in these tumors. Several reports have suggested that this strategy might be most relevant for specific subgroups of patients, namely Verhaak's classical and TP53 wild-type tumors. Using kinase assays and microarray genetic profiling in a series of 27 proprietary fresh frozen surgical glioma samples, we showed that constitutive CK2 kinase activation is not restricted to tumors that present increased copy numbers or mRNA expression of its catalytic or regulatory subunits, and can result from a functional activation by various cytokines from the glioma microenvironment.

View Article and Find Full Text PDF

Inhibitors of casein kinase 2 (CK2), a regulator of cell proliferation and mediator of the DNA damage response, are being evaluated in clinical trials for the treatment of cancers. Apigenin was capable of inhibiting the activation of CK2 following γ irradiation in LN18 and U87 malignant glioma cells. Apigenin and siRNA-mediated CK2 protein depletion further inhibited NF-κB activation and altered the Tyr68 phosphorylation of Chk2 kinase, a DNA damage response checkpoint kinase, following irradiation.

View Article and Find Full Text PDF

The efficacy of HSV-TK/ganciclovir-based gene therapy on malignant gliomas largely relies on the amplitude of the bystander effect. In these experiments, the anti-inflammatory drug Sulfasalazine increased the HSV-TK/ganciclovir bystander effect in C6, 9L and LN18 cells but not in U87 glioma cells. Using bi-compartmental culture devices and conditioned medium transfer experiments, we showed that in C6, 9L and LN18 cells but not in U87 cells, Sulfasalazine also unveiled a new, contact-independent mechanism of HSV-TK/ganciclovir bystander effect.

View Article and Find Full Text PDF

Glioblastomas, the most common primary brain cancers, respond poorly to current treatment modalities and carry a dismal prognosis. In this study, we demonstrated that the transcription factor nuclear factor (NF)-kappaB is constitutively activated in glioblastoma surgical samples, primary cultures, and cell lines and promotes their growth and survival. Sulfasalazine, an anti-inflammatory drug that specifically inhibits the activation of NF-kappaB, blocked the cell cycle and induced apoptosis in several glioblastoma cell lines and primary cultures, as did gene therapy with a vector encoding a super-repressor of NF-kappaB.

View Article and Find Full Text PDF