Publications by authors named "Minh-Kevin Nguyen"

Alterations in the plasma sodium concentration ([Na+]p) is predicted based on changes in the mass balance of Na+, K+, and H2O. However, it is well appreciated that Na+ retention results in both osmotically active and osmotically inactive Na+ storage and that only osmotically active Na+ contributes to the modulation of the [Na+]p. Subject of Review: Recent clinical studies suggested that prediction of changes in the [Na+]p based on the mass balance of Na+, K+, and H2O is inaccurate since the osmotically inactive Na+ storage pool is dynamically regulated.

View Article and Find Full Text PDF

Recent data suggested that the osmolal gap attributed to ethanol as determined by the difference between serum osmolality and serum osmolarity is greater than its molar concentration. The increased osmotic activity of ethanol is thought to be due to its binding to water molecules. This study is conducted to determine the true osmotic contribution of ethanol to serum osmolality.

View Article and Find Full Text PDF

Background: Hyponatremia in the setting of cirrhosis is a common electrolyte disorder with few therapeutic options. The free water retention is due to non-osmotic vasopressin secretion resulting from the cirrhosis-associated splanchnic vasodilatation. Therefore, vasoconstrictive therapy may correct this electrolyte abnormality.

View Article and Find Full Text PDF

Because changes in the plasma water sodium concentration ([Na(+)]pw) are clinically due to changes in the mass balance of Na(+), K(+), and H2O, the analysis and treatment of the dysnatremias are dependent on the validity of the Edelman equation in defining the quantitative interrelationship between the [Na(+)]pw and the total exchangeable sodium (Nae), total exchangeable potassium (Ke), and total body water (TBW) (Edelman IS, Leibman J, O'Meara MP, Birkenfeld LW. J Clin Invest 37: 1236-1256, 1958): [Na(+)]pw = 1.11(Nae + Ke)/TBW - 25.

View Article and Find Full Text PDF