Publications by authors named "Minh-Dao Duong-Thi"

The molecular heterogeneity of extracellular vesicles (EVs) and the co-isolation of physically similar particles, such as lipoproteins (LPs), confounds and limits the sensitivity of EV bulk biomarker characterization. Herein, we present a single-EV and particle (siEVP) protein and RNA assay ( PRA) to simultaneously detect mRNAs, miRNAs, and proteins in subpopulations of EVs and LPs. The PRA immobilizes and sorts particles via positive immunoselection onto micropatterns and focuses biomolecular signals in situ.

View Article and Find Full Text PDF

Corneal dystrophies are a group of genetically inherited disorders with mutations in the gene affecting the Bowman's membrane and the corneal stroma. The mutant TGFBIp is highly aggregation-prone and is deposited in the cornea. Depending on the type of mutation the protein deposits may vary (amyloid, amorphous powdery aggregate or a mixed form of both), making the cornea opaque and thereby decreases visual acuity.

View Article and Find Full Text PDF

Fragment-based drug discovery is an important tool for design of small molecule hit-to-lead compounds against various biological targets. Several approved drugs have been derived from an initial fragment screen and many such candidates are in various stages of clinical trials. Finding fragment hits, that are suitable for optimisation by medicinal chemists, is still a challenge as the binding between the small fragment and its target is weak in the range of mM to µM of K and irrelevant non-specific interactions are abundant in this area of transient interactions.

View Article and Find Full Text PDF

Concomitant inhibition of multiple oncogenic pathways is a desirable goal in cancer therapy. To achieve such an outcome with a single molecule would simplify treatment regimes. Herein the core features of ruxolitinib (1), a marketed JAK1/2 inhibitor, have been merged with the HDAC inhibitor vorinostat (2), leading to new molecules that are bispecific targeted JAK/HDAC inhibitors.

View Article and Find Full Text PDF

Analysis of interactions between molecules is of fundamental importance in life science research. In this study, we applied weak affinity chromatography, based on high-performance liquid chromatography and mass spectrometry, as a powerful tool for direct analysis of the components of a chemical reaction mixture for their binding to a target protein. As a demonstration of the potential of this method, we analyzed the binding of the compounds of the reaction mixture to the chaperone heat shock protein 90 (Hsp90).

View Article and Find Full Text PDF

Membrane proteins constitute the largest class of drug targets but they present many challenges in drug discovery. Importantly, the discovery of potential drug candidates is hampered by the limited availability of efficient methods for screening drug-protein interactions. In this work we present a novel strategy for rapid identification of molecules capable of binding to a selected membrane protein.

View Article and Find Full Text PDF

In this study, we compared affinity data from surface plasmon resonance (SPR) and weak affinity chromatography (WAC), two established techniques for determination of weak affinity (mM-μM) small molecule-protein interactions. In the current comparison, thrombin was used as target protein. In WAC the affinity constant (KD) was determined from retention times, and in SPR it was determined by Langmuir isotherm fitting of steady-state responses.

View Article and Find Full Text PDF

In early drug discovery (e.g., in fragment screening), recognition of stereoisomeric structures is valuable and guides medicinal chemists to focus only on useful configurations.

View Article and Find Full Text PDF

Fragment screening, an emerging approach for hit finding in drug discovery, has recently been proven effective by its first approved drug, vemurafenib, for cancer treatment. Techniques such as nuclear magnetic resonance, surface plasmon resonance, and isothemal titration calorimetry, with their own pros and cons, have been employed for screening fragment libraries. As an alternative approach, screening based on high-performance liquid chromatography separation has been developed.

View Article and Find Full Text PDF

Fragment-based drug design (FBDD) is currently being implemented in drug discovery, creating a demand for developing efficient techniques for fragment screening. Due to the intrinsic weak or transient binding of fragments (mM-μM in dissociation constant (K(D))) to targets, methods must be sensitive enough to accurately detect and quantify an interaction. This study presents weak affinity chromatography (WAC) as an alternative tool for screening of small fragments.

View Article and Find Full Text PDF

High-throughput screening of compound libraries, including the study of fragments, has become one of the cornerstones in modern drug discovery research. During this process hits are defined that may be developed into valuable leads and eventually into possible drug candidates. In this paper, we have demonstrated that parallel zonal weak affinity chromatography in microcolumns on a chip offers a possible screening format for weakly binding ligands toward a protein target.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioncv77d8ncmahac8j24bnq199nsutdfp4d): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once