In this study, we investigated the micromechanical deformation and damage behavior of commercially extruded and additively manufactured 316L stainless steels (AMed SS316L) by combining experimental examinations and crystal plasticity modeling. The AMed alloy was fabricated using the laser powder bed fusion (LPBF) technique with an orthogonal scanning strategy to control the directionality of the as-fabricated material. Optical microscopy and electron backscatter diffraction measurements revealed distinct grain morphologies and crystallographic textures in the two alloys.
View Article and Find Full Text PDFWe predict a novel topological state,, in magnetic topological insulators. The topological state is characterized by different topologies of electrons with different spin orientations, i.e.
View Article and Find Full Text PDFThis work has developed a new strategy of biogeochemical Fe(II) generators for activating microbial Fe(II) generation to immobilize Cd in soils through protons scavenging and coprecipitation. A new biochar modified magnetite (FeBC15) has been fabricated through a top-down method, with which microbial respiration can be stimulated in paddy soil. The FeBC15 exhibits a higher adsorption capacity for Cd than pristine magnetite (1.
View Article and Find Full Text PDFIn the present study, we have investigated the effect of post-welding heat treatment (PWHT) of quenching and tempering (QT) on the microstructure and mechanical properties of welded boron steel joints processed using laser-arc hybrid welding on two commercial filler materials, SM80 (Type-I) and ZH120 (Type-II). The microstructure and mechanical properties of the weld joints were characterized via optical microscopy, Vickers microhardness, and the uniaxial tensile test. The macrostructure of the weld joint was composed of a fusion zone (FZ), heat-affected zone (HAZ), and base metal zone (BMZ).
View Article and Find Full Text PDFJ Phys Condens Matter
October 2011
We propose that competition between Kondo and magnetic correlations results in a novel universality class for heavy fermion quantum criticality in the presence of strong randomness. Starting from an Anderson lattice model with disorder, we derive an effective local field theory in the dynamical mean-field theory approximation, where randomness is introduced into both hybridization and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. Performing the saddle-point analysis in the U(1) slave-boson representation, we reveal its phase diagram which shows a quantum phase transition from a spin liquid state to a local Fermi liquid phase.
View Article and Find Full Text PDFWe find that competition between random Kondo and random magnetic correlations results in a quantum phase transition from a local Fermi liquid to a spin liquid. The local charge susceptibility turns out to have exactly the same critical exponent as the local spin susceptibility, suggesting a novel duality between the Kondo singlet phase and the critical local moment state beyond the Landau-Ginzburg-Wilson symmetry breaking framework. This leads us to propose an enhanced symmetry at the local quantum critical point, described by an O(4) vector for spin and charge.
View Article and Find Full Text PDF