Publications by authors named "Minh K Nguyen"

Environmental pollution, such as water contamination, is a critical issue that must be absolutely addressed. Here, three different morphologies of tungsten-based photocatalysts (WO nanorods, WO/WS nanobricks, WO/WS nanorods) are made using a simple hydrothermal method by changing the solvents (HO, DMF, aqueous HCl solution). The as-prepared nanocatalysts have excellent thermal stability, large porosity, and high hydrophilicity.

View Article and Find Full Text PDF

Human health/socioeconomic development is closely correlated to environmental pollution, highlighting the need to monitor contaminants in the real environment with reliable devices such as biosensors. Recently, variety of biosensors gained high attention and employed as application, in real-time, and cost-effective analytical tools for healthy environment. For continuous environmental monitoring, it is necessary for portable, cost-effective, quick, and flexible biosensing devices.

View Article and Find Full Text PDF

Motivation: Identifying organellar DNA, such as mitochondrial or plastid sequences, inside a whole genome assembly, remains challenging and requires biological background knowledge. To address this, we developed ODNA based on genome annotation and machine learning to fulfill.

Results: ODNA is a software that classifies organellar DNA sequences within a genome assembly by machine learning based on a predefined genome annotation workflow.

View Article and Find Full Text PDF

Zeolitic imidazolate framework ZIF-8, a type of metal-organic framework, has diverse applications in multiple catalytic fields due to its outstanding properties. Herein, ZIF-8 photocatalysts with three different morphologies (dodecahedral, pitaya-like, and leaf-like) are successfully synthesized under ambient conditions from zinc salts by altering the volume ratio of methanol and water used as a solvent. The as-synthesized ZIFs have high crystallinity with distinct BET surface areas.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the presence and ecological risks of microplastics (MPs) in peatlands of Long An province, Vietnam, identifying polyvinyl chloride, polyethylene, and polypropylene as the most common types.
  • High levels of MPs were found in Tan Thanh and Thanh Hoa districts, indicating significant contamination and ecological risks based on hazard and pollution load indexes.
  • The research includes a SWOT analysis to address microplastics pollution and suggests practical strategies for managing peatlands and promoting a circular economy in response to these environmental challenges.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how adding biochar to compost affects odor emissions, specifically ammonia and hydrogen sulfide, which can harm the environment and human health.
  • Five different compost treatments were tested, varying the amount of biochar, and results showed that higher biochar content (20%) significantly reduced ammonia (2 ppm) and hydrogen sulfide (3 ppm) emissions.
  • Key factors influencing odor emissions included temperature, moisture, and oxygen levels, and the compost produced was mature and non-toxic, suggesting biochar's potential for agricultural applications.
View Article and Find Full Text PDF

Objective: Although epilepsy surgery is more effective than medical therapy for drug-resistant patients, it is underutilized in both high-income and low- and middle-income countries. In light of our efforts to establish an epilepsy surgery program in a resource-limited setting, this study aimed to determine the outcome of the epilepsy surgery program in Ho Chi Minh City (HCMC), Vietnam.

Methods: In 2018, we developed the HCMC epilepsy core multidisciplinary team with members from various hospitals and centers.

View Article and Find Full Text PDF

Microplastic pollution is becoming a global challenge due to its long-term accumulation in the environment, causing adverse effects on human health and the ecosystem. Sludge discharged from wastewater treatment plants (WWTPs) plays a critical role as a carrier and primary source of environmental microplastic contamination. A significantly average microplastic variation between 1000 and 301,400 particles kg has been reported in the sludge samples.

View Article and Find Full Text PDF

Soft robotic modules have potential use for therapeutic and educational purposes. To do so, they need to be safe, soft, smart, and customizable to serve individuals' different preferences and personalities. A safe modular robotic product made of soft materials, particularly silicon, programmed by artificial intelligence algorithms and developed via additive manufacturing would be promising.

View Article and Find Full Text PDF

Vietnam is known as one of the high plastic consumption countries in Southeast Asia. This study initially determined characteristics of microplastics (MPs) including morphology, polymer type, and abundance at peatland areas in Mekong Delta in Vietnam. The MPs level was found with an average abundance of 192.

View Article and Find Full Text PDF

Composting is very robust and efficient for the biodegradation of organic waste; however secondary pollutants, namely greenhouse gases (GHGs) and odorous emissions, are environmental concerns during this process. Biochar addition to compost has attracted the interest of scientists with a lot of publication in recent years because it has addressed this matter and enhanced the quality of compost mixture. This review aims to evaluate the role of biochar during organic waste composting and identify the gaps of knowledge in this field.

View Article and Find Full Text PDF

Drug delivery to central nervous system (CNS) diseases is very challenging since the presence of the innate blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier that impede drug delivery. Among new strategies to overcome these limitations and successfully deliver drugs to the CNS, nanotechnology-based drug delivery platform, offers potential therapeutic approach for the treatment of some common neurological disorders like Alzheimer's disease, frontotemporal dementia, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease. This review aimed to highlight advances in research on the development of nano-based therapeutics for their implications in therapy of CNS disorders.

View Article and Find Full Text PDF
Article Synopsis
  • Carbon dots (CDs) are unique carbon-based fluorescent nanomaterials that can be easily produced using a simple one-step process from chitosan without special reagents.* -
  • The resulting CDs have desirable features, including a small size, strong blue light emission, a high quantum yield of 5.52%, and amino groups on their surface.* -
  • These CDs show low toxicity and high compatibility with biological systems, significantly enhancing astaxanthin production in algae, suggesting potential applications in bioimaging, drug delivery, and promoting algal biorefinery.*
View Article and Find Full Text PDF

Delivery systems for controlled release of RNA interference (RNAi) molecules, including small interfering (siRNA) and microRNA (miRNA), have the potential to direct stem cell differentiation for regenerative musculoskeletal applications. To date, localized RNA delivery platforms in this area have focused predominantly on bulk scaffold-based approaches, which can interfere with cell-cell interactions important for recapitulating some native musculoskeletal developmental and healing processes in tissue regeneration strategies. In contrast, scaffold-free, high density human mesenchymal stem cell (hMSC) aggregates may provide an avenue for creating a more biomimetic microenvironment.

View Article and Find Full Text PDF

Ice accumulation on the surface of railway electrical wires can cause significant problems in the winter season. Different anti-icing liquids have been used to prevent the formation of ice on different surface substrates. The most common anti-icing liquids are ethylene glycol mixtures.

View Article and Find Full Text PDF

Nowadays, nanotechnology and its related industries are becoming a rapidly explosive industry that offers many benefits to human life. However, along with the increased production and use of nanoparticles (NPs), their presence in the environment creates a high risk of increasing toxic effects on aquatic organisms. Therefore, a large number of studies focusing on the toxicity of these NPs to the aquatic organisms are carried out which used algal species as a common biological model.

View Article and Find Full Text PDF

Small interfering RNA (siRNA) has found many applications in tissue regeneration and disease therapeutics. Effective and localized siRNA delivery remains challenging, reducing its therapeutic potential. Here, we report a strategy to control and prolong siRNA release by directly tethering transfection-capable siRNA to photocrosslinked dextran hydrogels.

View Article and Find Full Text PDF

The possible functions of a protein are strongly related to its structural rearrangements in the presence of other molecules or environmental changes. Hence, the evaluation of transition paths of proteins, which encodes conformational changes between stable states, is important since it may reveal the underlying mechanisms of the biochemical processes related to these motions. During the last few decades, different geometry-based methods have been proposed to predict such transition paths.

View Article and Find Full Text PDF

The knowledge of conformational transition paths in proteins can be useful for understanding protein mechanisms. Recently, we have introduced the As-Rigid-As-Possible (ARAP) interpolation method, for generating interpolation paths between two protein conformations. The method was shown to preserve well the rigidity of the initial conformation along the path.

View Article and Find Full Text PDF

Unlabelled: RNA interference (RNAi) may be an effective and valuable tool for promoting the growth of functional tissue, as short interfering RNA (siRNA) and microRNA (miRNA) can block the expression of genes that have negative effects on tissue regeneration. Our group has recently reported that the localized and sustained presentation of siRNA against noggin (siNoggin) and miRNA-20a from in situ forming poly(ethylene glycol) (PEG) hydrogels enhanced osteogenic differentiation of encapsulated human bone marrow-derived mesenchymal stem cells (hMSCs). Here, the capacity of the hydrogel system to accelerate bone formation in a rat calvarial bone defect model is presented.

View Article and Find Full Text PDF

High-density mesenchymal stem cell (MSC) aggregates can be guided to form bone-like tissue via endochondral ossification in vitro when culture media is supplemented with proteins, such as growth factors (GFs), to first guide the formation of a cartilage template, followed by culture with hypertrophic factors. Recent reports have recapitulated these results through the controlled spatiotemporal delivery of chondrogenic transforming growth factor-β1 (TGF-β1) and chondrogenic and osteogenic bone morphogenetic protein-2 (BMP-2) from microparticles embedded within human MSC aggregates to avoid diffusion limitations and the lengthy, costly in vitro culture necessary with repeat exogenous supplementation. However, since GFs have limited stability, localized gene delivery is a promising alternative to the use of proteins.

View Article and Find Full Text PDF

This article proposes a method to efficiently generate approximate ligand unbinding pathways. It combines an efficient tree-based exploration method with a morphing technique from Computer Graphics for dimensionality reduction. This method is computationally cheap and, unlike many existing approaches, does not require a reaction coordinate to guide the search.

View Article and Find Full Text PDF

Macroscopic hydrogels provide valuable platforms for controlling the release of genetic materials such as small interfering RNA (siRNA) and microRNA (miRNA) for biomedical applications. However, after these hydrogels are formed, it is challenging to alter the release rate of genetic materials. In this report, a Michael addition catalyst-free photodegradable poly(ethylene glycol) (PEG)-based hydrogel system has been developed that provides an active means of controlling the release of genetic materials postgelation using external UV light application.

View Article and Find Full Text PDF

The growing socioeconomic burden of musculoskeletal injuries and limitations of current therapies have motivated tissue engineering approaches to generate functional tissues to aid in defect healing. A readily implantable scaffold-free system comprised of human bone marrow-derived mesenchymal stem cells embedded with bioactive microparticles capable of controlled delivery of transforming growth factor-beta 1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) was engineered to guide endochondral bone formation. The microparticles were formulated to release TGF-β1 early to induce cartilage formation and BMP-2 in a more sustained manner to promote remodeling into bone.

View Article and Find Full Text PDF