Publications by authors named "Minh Diem Vu"

We identified B cell maturation antigen (BCMA) as a potential therapeutic target in 778 newly diagnosed and relapsed myeloma patients. We constructed an IgG-based BCMA-T cell bispecific antibody (EM801) and showed that it increased CD3 T cell/myeloma cell crosslinking, followed by CD4/CD8 T cell activation, and secretion of interferon-γ, granzyme B, and perforin. This effect is CD4 and CD8 T cell mediated.

View Article and Find Full Text PDF

The discovery of a novel series of pyrrolopyrazines as JAK inhibitors with comparable enzyme and cellular activity to tofacitinib is described. The series was identified using a scaffold hopping approach aided by structure based drug design using principles of intramolecular hydrogen bonding for conformational restriction and targeting specific pockets for modulating kinase activity.

View Article and Find Full Text PDF

We report the discovery of a novel series of ATP-competitive Janus kinase 3 (JAK3) inhibitors based on the 5H-pyrrolo[2,3-b]pyrazine scaffold. The initial leads in this series, compounds 1a and 1h, showed promising potencies, but a lack of selectivity against other isoforms in the JAK family. Computational and crystallographic analysis suggested that the phenyl ether moiety possessed a favorable vector to achieve selectivity.

View Article and Find Full Text PDF

Using a structure based design approach we have identified a series of indazole substituted pyrrolopyrazines, which are potent inhibitors of JAK3. Intramolecular electronic repulsion was used as a strategy to induce a strong conformational bias within the ligand. Compounds bearing this conformation participated in a favorable hydrophobic interaction with a cysteine residue in the JAK3 binding pocket, which imparted high selectivity versus the kinome and improved selectivity within the JAK family.

View Article and Find Full Text PDF

The Janus kinases (JAKs) are involved in multiple signaling networks relevant to inflammatory diseases, and inhibition of one or more members of this class may modulate disease activity or progression. We optimized a new inhibitor scaffold, 3-amido-5-cyclopropylpyrrolopyrazines, to a potent example with reasonable kinome selectivity, including selectivity for JAK3 versus JAK1, and good biopharmaceutical properties. Evaluation of this analogue in cellular and in vivo models confirmed functional selectivity for modulation of a JAK3/JAK1-dependent IL-2 stimulated pathway over a JAK1/JAK2/Tyk2-dependent IL-6 stimulated pathway.

View Article and Find Full Text PDF

Genetic mutation and pharmacological inhibition of Bruton's tyrosine kinase (Btk) both have been shown to prevent the development of collagen-induced arthritis (CIA) in mice, providing a rationale for the development of Btk inhibitors for treating rheumatoid arthritis (RA). In the present study, we characterized a novel Btk inhibitor, 6-cyclopropyl-8-fluoro-2-(2-hydroxymethyl-3-{1-methyl-5-[5-(4-methyl-piperazin-1-yl)-pyridin-2-ylamino]-6-oxo-1,6-dihydro-pyridin-3-yl}-phenyl)-2H-isoquinolin-1-one (RN486), in vitro and in rodent models of immune hypersensitivity and arthritis. We demonstrated that RN486 not only potently and selectively inhibited the Btk enzyme, but also displayed functional activities in human cell-based assays in multiple cell types, blocking Fcε receptor cross-linking-induced degranulation in mast cells (IC(50) = 2.

View Article and Find Full Text PDF

T cell Ig mucin (Tim) molecules modulate CD4(+) T cell responses. In keeping with the view that Tim-1 generates a stimulatory signal for CD4(+) T cell activation, we hypothesized that an agonist Tim-1-specific mAb would intensify the CD4(+) T cell-dependant allograft response. Unexpectedly, we determined that a particular Tim-1-specific mAb exerted reciprocal effects upon the commitment of alloactivated T cells to regulatory and effector phenotypes.

View Article and Find Full Text PDF

T cell depletion is a widely used approach in clinical transplantation. However, not all T cells are equally sensitive to depletion therapies and a significant fraction of T cells persists even after aggressive treatment. The functional attributes of such T cells and the mechanisms responsible for their resistance to depletion are poorly studied.

View Article and Find Full Text PDF

OX40 is a recently identified T-cell costimulatory molecule that belongs to the TNF/TNFR superfamily. OX40 can be expressed by both activated T effector cells and Foxp3(+) Tregs. It is well known that OX40 delivers a potent costimulatory signal to T effector cells, but very little is known about the role of OX40 in regulating the suppressor properties of Foxp3(+) Tregs and the de novo generation of new inducible Foxp3(+) Tregs from T effector cells.

View Article and Find Full Text PDF

Natural killer (NK) cells are programmed to kill target cells without prior antigen priming. Because of their potent cytolytic activities, NK cells are one of the key cell types involved in dismantling allografts. However, in certain transplant models, NK cells also express potent immunoregulatory properties that promote tolerance induction.

View Article and Find Full Text PDF

Memory T cells can be a significant barrier to the induction of transplant tolerance. However, the molecular pathways that can regulate memory T cell-mediated rejection are poorly defined. In the present study we tested the hypothesis that the novel alternative costimulatory molecules (i.

View Article and Find Full Text PDF

The critical role of costimulatory signals in T-cell activation and the complexity of T-cell costimulatory pathways involved make a detailed understanding of this system a challenging task. By taking advantage of the unique chemical properties of CFSE, we and others have developed an in vivo model that allows quantitative analysis of T-cell activation at a single-cell level. This model involves labeling of donor T-cells with the tracking dye CFSE and adoptively transferring into lethally irradiated allogeneic hosts.

View Article and Find Full Text PDF

Transplant rejection, like tolerance, is a T cell-dependent event. There is compelling evidence to suggest that induction of transplant tolerance is an actively learned process in which T cells need to engage the alloantigens in order to learn to tolerate the allograft. A family of cytokines whose receptors use the same IL-2 receptor gamma chain (also called the common gammac) plays an important role in regulating multiple aspects of the allograft response (i.

View Article and Find Full Text PDF

Costimulatory signals and growth factor signals play a key role in commanding T cell activation and T cell effector function. However, how costimulatory signals and growth factor signals interact and integrate into the activation program of CD4(+) and CD8(+) T cells during the allograft response remains poorly defined. In the present study we found that either CD4- or CD8-deficient mice can vigorously reject the skin allografts.

View Article and Find Full Text PDF

Background: Malononitrilamide FK778, an analogue of leflunomide's active metabolite, is a promising novel small molecule with immunosuppressive and immunomodulatory properties. In this study, we evaluated the ability of combination therapy of FK778 with tacrolimus to inhibit lymphocyte proliferation and to prevent acute allograft rejection.

Methods: Proliferation assay was used to evaluate the effect of FK778 plus tacrolimus on murine splenocytes, monkey lymphocytes, and human peripheral blood mononuclear cells, after activation with T or B cell-specific mitogens.

View Article and Find Full Text PDF

The application of multiple immunosuppressive therapy for organ transplantation could enhance therapeutic efficacy, while minimizing the toxicity of individual drugs used in the regimen. In this study, the effect of the combined therapy of vincristine (VCR) with tacrolimus (FK506) or sirolimus (rapamycin, RAPA) was tested in prevention of acute heart allograft rejection in the rat. A Brown Norway (BN, RT 1(n)) to Lewis (LEW, RT 1(1)) rat combination was used in a heart allografting model.

View Article and Find Full Text PDF

Background: Malononitrilamide 715 (FK778) is a new class of low-molecular-weight immunosuppressant that is a derivative of the active metabolite of leflunomide, A77 1726. In this study, the authors evaluated the combined effect of FK778 with tacrolimus in prevention of renal allograft rejection in Vervet monkeys.

Methods: Male Vervet monkeys were obtained from Caribbean Primates Ltd.

View Article and Find Full Text PDF

Background: Vasogen Inc.'s (Mississauga, Ontario, Canada) immune modulation therapy (IMT) is a therapy in which cells from the patient's own blood are modified by ex vivo exposure to specific physicochemical stressors, including oxidation, ultraviolet (UV) light, and an elevated temperature. The therapy has been shown to have a beneficial effect in models of inflammation and vascular diseases.

View Article and Find Full Text PDF

Improved microsurgical techniques for en bloc vascularized adnexal isograft in the rat is described. The graft of the right ovary together with its fallopian tube and upper third of uterus was transplanted orthotopically with end-to-side anastomoses between the donor aortic segment and recipient aorta and between the donor vena cava segment and recipient inferior vena cava, with end-to-end anastomosis of the donor and recipient uterus in a syngeneic, bilaterally oophorectomized rat. All transplantations were successful in terms of immediate vascular patency rate (10/10, 100%).

View Article and Find Full Text PDF