Unlabelled: Attention can be deployed in anticipation of visual stimuli based on features such as their color or direction of motion. This anticipatory feature-based attention involves top-down neural control signals from the frontoparietal network that bias visual cortex to enhance the processing of attended information and suppress distraction. So, for example, anticipatory attention control can enable effective selection based on stimulus color while ignoring distracting information about stimulus motion.
View Article and Find Full Text PDFPerceptual expertise and attention are two important factors that enable superior object recognition and task performance. While expertise enhances knowledge and provides a holistic understanding of the environment, attention allows us to selectively focus on task-related information and suppress distraction. It has been suggested that attention operates differently in experts and in novices, but much remains unknown.
View Article and Find Full Text PDFBackground: Experience changes visuo-cortical tuning. In humans, re-tuning has been studied during aversive generalization learning, in which the similarity of generalization stimuli (GSs) with a conditioned threat cue (CS+) is used to quantify tuning functions. Previous work utilized pre-defined tuning shapes (generalization and sharpening patterns).
View Article and Find Full Text PDFRepeated stimulus exposure alters the brain's response to the stimulus. We investigated the underlying neural mechanisms by recording functional MRI data from human observers passively viewing 120 presentations of two Gabor patches (each Gabor repeating 60 times). We evaluated support for two prominent models of stimulus repetition, the fatigue model and the sharpening model.
View Article and Find Full Text PDFExperience changes the tuning of sensory neurons, including neurons in retinotopic visual cortex, as evident from work in humans and non-human animals. In human observers, visuo-cortical re-tuning has been studied during aversive generalization learning paradigms, in which the similarity of generalization stimuli (GSs) with a conditioned threat cue (CS+) is used to quantify tuning functions. This work utilized pre-defined tuning shapes reflecting prototypical generalization (Gaussian) and sharpening (Difference-of-Gaussians) patterns.
View Article and Find Full Text PDFTrigeminal neuralgia (TN) is a highly debilitating facial pain condition. Magnetic resonance imaging (MRI) is the main method for generating insights into the central mechanisms of TN pain in humans. Studies have found both structural and functional abnormalities in various brain structures in TN patients as compared with healthy controls.
View Article and Find Full Text PDFRecent neuroimaging studies have shown that the visual cortex plays an important role in representing the affective significance of visual input. The origin of these affect-specific visual representations is debated: they are intrinsic to the visual system versus they arise through reentry from frontal emotion processing structures such as the amygdala. We examined this problem by combining convolutional neural network (CNN) models of the human ventral visual cortex pre-trained on ImageNet with two datasets of affective images.
View Article and Find Full Text PDFJ Neurosci Methods
January 2024
Background: Multivoxel pattern analysis (MVPA) examines fMRI activation patterns associated with different cognitive conditions. Support vector machines (SVMs) are the predominant method in MVPA. While SVM is intuitive and easy to apply, it is mainly suitable for analyzing data that are linearly separable.
View Article and Find Full Text PDFUnlabelled: In models of visual spatial attention control, it is commonly held that top-down control signals originate in the dorsal attention network, propagating to the visual cortex to modulate baseline neural activity and bias sensory processing. However, the precise distribution of these top-down influences across different levels of the visual hierarchy is debated. In addition, it is unclear whether these changes in baseline neural activity directly translate into improved performance.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) has revolutionized human brain research. But there exists a fundamental mismatch between the rapid time course of neural events and the sluggish nature of the fMRI blood oxygen level-dependent (BOLD) signal, which presents special challenges for cognitive neuroscience research. This limitation in the temporal resolution of fMRI puts constraints on the information about brain function that can be obtained with fMRI and also presents methodological challenges.
View Article and Find Full Text PDFUnlabelled: Multivoxel pattern analysis (MVPA) examines the differences in fMRI activation patterns associated with different cognitive conditions and provides information not possible with the conventional univariate analysis. Support vector machines (SVMs) are the predominant machine learning method in MVPA. SVMs are intuitive and easy to apply.
View Article and Find Full Text PDFThe brain operates an advanced complex system to support mental activities. Cognition is thought to emerge from dynamic states of the complex brain system, which are organized spatially through large-scale neural networks and temporally via neural synchrony. However, specific mechanisms underlying these processes remain obscure.
View Article and Find Full Text PDFTrigeminal neuralgia (TN) is a severe and disabling facial pain condition and is characterized by intermittent, severe, electric shock-like pain in one (or more) trigeminal subdivisions. This pain can be triggered by an innocuous stimulus or can be spontaneous. Presently available therapies for TN include both surgical and pharmacological management; however, the lack of a known etiology for TN contributes to the unpredictable response to treatment and the variability in long-term clinical outcomes.
View Article and Find Full Text PDFRecent neuroimaging studies have shown that the visual cortex plays an important role in representing the affective significance of visual input. The origin of these affect-specific visual representations is debated: they are intrinsic to the visual system versus they arise through reentry from frontal emotion processing structures such as the amygdala. We examined this problem by combining convolutional neural network (CNN) models of the human ventral visual cortex pre-trained on ImageNet with two datasets of affective images.
View Article and Find Full Text PDFSelective attention prioritizes information that is relevant to behavioral goals. Previous studies have shown that attended visual information is processed and represented more efficiently, but distracting visual information is not fully suppressed, and may also continue to be represented in the brain. In natural vision, to-be-attended and to-be-ignored objects may be present simultaneously in the scene.
View Article and Find Full Text PDFVerbal working memory is supported by a left-lateralized frontoparietal theta oscillatory (4-8 Hz) network. We tested whether stimulating the left frontoparietal network at theta frequency during verbal working memory can produce observable after-stimulation effects in behavior and neurophysiology. Weak theta-band alternating electric currents were delivered via two 4 × 1 HD electrode arrays centered at F3 and P3.
View Article and Find Full Text PDFParkinsonism Relat Disord
November 2022
Introduction: Free water fraction (FWF) is considered a metric of microstructural integrity and may be useful in predicting cognitive decline in idiopathic Parkinson's Disease (PD). We sought to determine if higher FWF within the dorsal portion of the caudate nucleus and basal nucleus of Meynert, two regions associated with cognitive decline in PD, predict change in cognition over a two-year span. Due to the existence of cognitive and neurophysiological subgroups within PD, we statistically categorized participants based on FWF in these regions.
View Article and Find Full Text PDFA left visual field (LVF) bias in perceptual judgments, response speed, and discrimination accuracy has been reported in humans. Cognitive factors, such as visual spatial attention, are known to modulate or even eliminate this bias. We investigated this problem by recording pupillometry together with functional magnetic resonance imaging (fMRI) in a cued visual spatial attention task.
View Article and Find Full Text PDFAnticipatory attention is a neurocognitive state in which attention control regions bias neural activity in sensory cortical areas to facilitate the selective processing of incoming targets. Previous electroencephalographic (EEG) studies have identified event-related potential (ERP) signatures of anticipatory attention, and implicated alpha band (8-12 Hz) EEG oscillatory activity in the selective control of neural excitability in visual cortex. However, the degree to which ERP and alpha band measures reflect related or distinct underlying neural processes remains to be further understood.
View Article and Find Full Text PDFNatural images containing affective scenes are used extensively to investigate the neural mechanisms of visual emotion processing. Functional fMRI studies have shown that these images activate a large-scale distributed brain network that encompasses areas in visual, temporal, and frontal cortices. The underlying spatial and temporal dynamics, however, remain to be better characterized.
View Article and Find Full Text PDFSince its beginnings in the early 20th century, the psychophysiological study of human brain function has included research into the spectral properties of electrical and magnetic brain signals. Now, dramatic advances in digital signal processing, biophysics, and computer science have enabled increasingly sophisticated methodology for neural time series analysis. Innovations in hardware and recording techniques have further expanded the range of tools available to researchers interested in measuring, quantifying, modeling, and altering the spectral properties of neural time series.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2022
The default mode network (DMN) is the most-prominent intrinsic connectivity network, serving as a key architecture of the brain's functional organization. Conversely, dysregulated DMN is characteristic of major neuropsychiatric disorders. However, the field still lacks mechanistic insights into the regulation of the DMN and effective interventions for DMN dysregulation.
View Article and Find Full Text PDFThe top-down control of attention involves command signals arising chiefly in the dorsal attention network (DAN) in frontal and parietal cortex and propagating to sensory cortex to enable the selective processing of incoming stimuli based on their behavioral relevance. Consistent with this view, the DAN is active during preparatory (anticipatory) attention for relevant events and objects, which, in vision, may be defined by different stimulus attributes including their spatial location, color, motion, or form. How this network is organized to support different forms of preparatory attention to different stimulus attributes remains unclear.
View Article and Find Full Text PDFFeature-based visual attention refers to preferential selection and processing of visual stimuli based on their nonspatial attributes, such as color or shape. Recent studies have highlighted the inferior frontal junction (IFJ) as a control region for feature but not spatial attention. However, the extent to which IFJ contributes to spatial versus feature attention control remains a topic of debate.
View Article and Find Full Text PDF