A formal [4 + 2] cycloaddition of oximes with -hydroxybenzyl alcohols was developed to easily synthesize diverse 1,3-benzoxazine derivatives. This synthesis was achieved under visible light-based organocatalytic and TsOH conditions. The reaction proceeds through the photoisomerization of oximes visible light-mediated energy transfer, followed by the nucleophilic attack of -QMs to oximes as a 1,2-dipole synthon, cyclization, and isomerization.
View Article and Find Full Text PDFThe spin-momentum locking of surface states in topological materials can produce a resistance that scales linearly with magnetic and electric fields. Such a bilinear magnetoelectric resistance (BMER) effect offers a new approach for information reading and field sensing applications, but the effects demonstrated so far are too weak or for low temperatures. This article reports the first observation of BMER effects in topological Dirac semimetals; the BMER responses were measured at room temperature and were substantially stronger than those reported previously.
View Article and Find Full Text PDFA general approach for the metal-free synthesis of thiophenes by -cyclobutanols and elemental sulfur has been developed. This protocol provides a strategy for constructing multisubstituted thiophene derivatives via C-S bond formation under air. This reaction shows good functionality tolerance under the reaction conditions, and the mechanism is validated by control experiments and density functional theory calculations.
View Article and Find Full Text PDFAntiferromagnetic insulators (AFIs) are of substantial interest because of their potential in the development of next-generation spintronic devices. One major effort in this emerging field is to harness AFIs for long-range spin information communication and storage. Here, we report a noninvasive method to optically access the intrinsic spin transport properties of an archetypical AFI α-FeO via nitrogen-vacancy (NV) quantum spin sensors.
View Article and Find Full Text PDFIn this paper, based on the embedded atom method (EAM) potential, molecular dynamics simulations of the solidification process of Al-4 at.%Cu alloy is carried out. The Al-Cu alloy melt is placed at different temperatures for isothermal solidification, and each stage of the entire solidification process is tracked, including homogeneous nucleation, nucleus growth, grain coarsening and microstructure evolution.
View Article and Find Full Text PDFSpin waves can transfer information free of electron transport and are promising for wave-based computing technologies with low-power consumption as a solution to severe energy losses in modern electronics. Logic circuits based on the spin-wave interference have been proposed for more than a decade, while it has yet been realized at the nanoscale. Here, we demonstrate the interference of spin waves with wavelengths down to 50 nm in a low-damping magnetic insulator.
View Article and Find Full Text PDFRecent experiments show that topological surface states (TSS) in topological insulators (TI) can be exploited to manipulate magnetic ordering in ferromagnets. In principle, TSS should also exist for other topological materials, but it remains unexplored as to whether such states can also be utilized to manipulate ferromagnets. Herein, current-induced magnetization switching enabled by TSS in a non-TI topological material, namely, a topological Dirac semimetal α-Sn, is reported.
View Article and Find Full Text PDFA topological insulator (TI) interfaced with a magnetic insulator (MI) may host an anomalous Hall effect (AHE), a quantum AHE, and a topological Hall effect (THE). Recent studies, however, suggest that coexisting magnetic phases in TI/MI heterostructures may result in an AHE-associated response that resembles a THE but in fact is not. This Letter reports a genuine THE in a TI/MI structure that has only one magnetic phase.
View Article and Find Full Text PDFWe report the modification of magnetism in a magnetic insulator Y_{3}Fe_{5}O_{12} thin film by topological surface states (TSS) in an adjacent topological insulator Bi_{2}Se_{3} thin film. Ferromagnetic resonance measurements show that the TSS in Bi_{2}Se_{3} produces a perpendicular magnetic anisotropy, results in a decrease in the gyromagnetic ratio, and enhances the damping in Y_{3}Fe_{5}O_{12}. Such TSS-induced changes become more pronounced as the temperature decreases from 300 to 50 K.
View Article and Find Full Text PDFAn efficient transition-metal-free tactic for the convergent synthesis of substituted dihydropyrroles and pyrroles by β-chloro-vinyl dithiane cyclization with a broad range of imines was developed. [3+2] Cyclization and aromatization occur under these reaction conditions providing biologically relevant dihydropyrroles and pyrroles in good yields.
View Article and Find Full Text PDFSpin waves can probe the Dzyaloshinskii-Moriya interaction (DMI), which gives rise to topological spin textures, such as skyrmions. However, the DMI has not yet been reported in yttrium iron garnet (YIG) with arguably the lowest damping for spin waves. In this work, we experimentally evidence the interfacial DMI in a 7-nm-thick YIG film by measuring the nonreciprocal spin-wave propagation in terms of frequency, amplitude, and most importantly group velocities using all electrical spin-wave spectroscopy.
View Article and Find Full Text PDFTopological surface states (TSSs) in a topological insulator are expected to be able to produce a spin-orbit torque that can switch a neighboring ferromagnet. This effect may be absent if the ferromagnet is conductive because it can completely suppress the TSSs, but it should be present if the ferromagnet is insulating. This study reports TSS-induced switching in a bilayer consisting of a topological insulator BiSe and an insulating ferromagnet BaFeO.
View Article and Find Full Text PDFSpin waves may constitute key components of low-power spintronic devices. Antiferromagnetic-type spin waves are innately high-speed, stable and dual-polarized. So far, it has remained challenging to excite and manipulate antiferromagnetic-type propagating spin waves.
View Article and Find Full Text PDFExact fractals of nonlinear waves that rely on strong dispersion and nonlinearity and arise spontaneously out of magnetic media were observed for the first time. The experiments make use of a microwave to excite a spin wave in a quasi-one-dimensional magnonic crystal. When the power of the input microwave (P_{in}) is low, the output signal has a power-frequency spectrum that consists of a single peak.
View Article and Find Full Text PDFWe observe strong interlayer magnon-magnon coupling in an on-chip nanomagnonic device at room temperature. Ferromagnetic nanowire arrays are integrated on a 20-nm-thick yttrium iron garnet (YIG) thin film strip. Large anticrossing gaps up to 1.
View Article and Find Full Text PDFThe nontrivial feature and penetration depth of the topological surface states (TSS) in SmB_{6} were studied via spin pumping. The experiments used SmB_{6} thin films grown on the bulk magnetic insulator Y_{3}Fe_{5}O_{12} (YIG). Upon the excitation of magnetization precession in the YIG, a spin current is generated in the SmB_{6} that produces, via spin-orbit coupling, a lateral electrical voltage in the film.
View Article and Find Full Text PDFRecent years have witnessed a rapidly growing interest in exploring the use of spin waves for information transmission and computation toward establishing a spin-wave-based technology that is not only significantly more energy efficient than the CMOS technology, but may also cause a major departure from the von-Neumann architecture by enabling memory-in-logic and logic-in-memory architectures. A major bottleneck of advancing this technology is the excitation of spin waves with short wavelengths, which is a must because the wavelength dictates device scalability. Here, we report the discovery of an approach for the excitation of nm-wavelength spin waves.
View Article and Find Full Text PDFManipulation of spin degree of freedom (DOF) of electrons is the fundamental aspect of spintronic and valleytronic devices. Two-dimensional transition metal dichalcogenides (2D TMDCs) exhibit an emerging valley pseudospin, in which spin-up (-down) electrons are distributed in a +K (-K) valley. This valley polarization gives a DOF for spintronic and valleytronic devices.
View Article and Find Full Text PDFA straightforward Fe-catalyzed method for the synthesis of pyrrolo[1,2-a]quinoxalines from 1-(2-aminophenyl)pyrroles and cyclic ethers, which includes functionalization of C(sp)-H bonds and the construction of C-C and C-N bonds, has been developed. The features of this reaction are Fe catalysis, low-cost and readily accessible starting materials. Moreover, this procedure exhibits good functional group tolerance and a series of pyrrolo[1,2-a]quinoxaline derivatives are obtained in moderate to good yields.
View Article and Find Full Text PDFOne-pot Cu-catalyzed tandem aerobic oxidative cyclization for the synthesis of quinolines from 2-vinylanilines/2-arylanilines and 2-methylquinolines via C(sp)-H/C(sp)-H bond functionalization has been developed. Dioxygen as an ideal oxidant has been employed for this transformation. The substrates bearing various functional groups perform well in this process and generate the desired products in moderate to good yields.
View Article and Find Full Text PDFThe formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear waves in a magnetic film are studied. Experiments involve the excitation of a spin wave step pulse in a low-loss magnetic Y_{3}Fe_{5}O_{12} thin film strip, in which the spin wave amplitude increases rapidly, realizing the canonical Riemann problem of shock theory. Under certain conditions, the envelope of the spin wave pulse evolves into a DSW that consists of an expanding train of nonlinear oscillations with amplitudes increasing from front to back, terminated by a black soliton.
View Article and Find Full Text PDFThe role of damping in the spin Seebeck effect (SSE) was studied experimentally for the first time. The experiments used YFeO (YIG)/Pt bilayered structures where the YIG films exhibit very similar structural and static magnetic properties but very different damping. The data show that a decrease in the damping gives rise to an increase in the SSE coefficient, which is qualitatively consistent with some of the theoretical models.
View Article and Find Full Text PDFAs an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems.
View Article and Find Full Text PDF