Publications by authors named "Mingzhi Lv"

Chromium electroplating produces Cr(III)-containing electroplating sludge (EPS) in large volumes, which is easily oxidised to Cr(Ⅵ) and is harmful to the environment and human health. This study recovered Cr(III) as NaCrO from EPS using an integrated bipolar membrane electrodialysis (BMED)-HO oxidation technology. During the treatment process, Cr(III) was oxidised to Cr(VI) using HO in an alkaline environment, BMED was used to separate and recover Cr(VI).

View Article and Find Full Text PDF

The study aims to explore the influence of parental over-protection on academic entitlement of nursing students, and examine the mediating roles of external locus of control and psychological entitlement. The study sampled two medical universities in Guizhou and Yunnan provinces, China. Participants were nursing students in grades one to four (N = 1003; mean age = 19.

View Article and Find Full Text PDF

Electroplating sludge, though a hazardous waste, is a valuable resource as it contains a large amount of precious metals. In this study, copper was recovered from the electroplating sludge using a technology that integrates bipolar membrane electrodialysis (BMED) and electrodeposition. The experimental results showed that Cu in the electroplating sludge was successfully separated and concentrated in the BMED system without adding any chemical reagents; the concentrated Cu was recovered in the form of copper foil in an electrodeposition system.

View Article and Find Full Text PDF

Compared with conventional transparent conductive indium tin oxide (ITO) films, poly(3,4-ethylenedioxythiophene):poly (styrenesulfonic acid) (PEDOT:PSS) as a conductive polymer material has been diffusely applied in organic optoelectronic devices. However, its optoelectrical properties need to be further improved. Therefore, a simple and universal approach with introducing ITO nanoparticles (NPs) was proposed to improve the optoelectrical properties of PEDOT:PSS thin films.

View Article and Find Full Text PDF

In this study, a simple and novel mechanical pressure treatment (MPT) was used to effectively improve the electrical and optical properties of ethylene glycol (EG)-doped PEDOT:PSS (EG-PEDOT:PSS) thin films, one of the most successful organic conductor materials ever which is are widely used in organic electronics because of their admirable film-forming property, high light transmittance, and excellent thermal stability. It is found that the conductivity of the EG-PEDOT:PSS films increased by 32% due to dramatically enhanced carrier mobility because an MPT improves the phase separation between PEDOT and PSS and then yields an interpenetrating conductive network. Meanwhile, the transmittance of the EG-PEDOT:PSS films in the near-infrared band was enhanced, and the surface roughness was reduced.

View Article and Find Full Text PDF