Publications by authors named "Mingzhe Gan"

Point-of-care testing (POCT) can be the method of choice for detecting infectious pathogens; these pathogens are responsible for not only infectious diseases such as COVID-19, but also for certain types of cancers. For example, infections by human papillomavirus (HPV) or Helicobacter pylori (H. pylori) are the main cause of cervical and stomach cancers, respectively.

View Article and Find Full Text PDF

Inhibitory oligodeoxynucleotides (INH-ODN) can exert an immunomodulatory effect to specifically block TLR7 and TLR9 signaling in systemic lupus erythematosus (SLE). To extend the half-life of INH-ODN in vivo, the phosphorothioate backbone, instead of the native phosphodiester, is preferred due to its strong resistance against nuclease degradation. However, its incomplete degradation in vivo may lead to potential risk.

View Article and Find Full Text PDF

Point-of-care testing (POCT) has broad applications in resource-limited settings. Here, a POCT platform termed POCKET (point-of-care kit for the entire test) is demonstrated that is ultraportable and versatile for analyzing multiple types of DNA in different fields in a sample-to-answer manner. The POCKET is less than 100 g and smaller than 25 cm in length.

View Article and Find Full Text PDF

Ancient biomass is the main source for petrochemicals including plastics, which are inherently difficult to be degraded, increasingly polluting the earth's ecosystem including our oceans. To reduce the consumption by substituting or even replacing most of the petrochemicals with degradable and renewable materials is inevitable and urgent for a sustainable future. We report here a unique strategy to directly convert biomass DNA, at a large scale and with low cost, to diverse materials including gels, membranes, and plastics without breaking down DNA first into building blocks and without polymer syntheses.

View Article and Find Full Text PDF

Cell-free protein synthesis (CFPS) has the advantage of rapid expression of proteins and has been widely implemented in synthetic biology and protein engineering. However, the critical problem limiting CFPS industrial application is its relatively high cost, which partly attributes to the overexpense of single-use DNA templates. Hydrogels provide a possible solution because they can preserve and reutilize the DNA templates in CFPS and have great potential in elevating the protein production yield of the CFPS.

View Article and Find Full Text PDF

Metabolism is a key process that makes life alive-the combination of anabolism and catabolism sustains life by a continuous flux of matter and energy. In other words, the materials comprising life are synthesized, assembled, dissipated, and decomposed autonomously in a controlled, hierarchical manner using biological processes. Although some biological approaches for creating dynamic materials have been reported, the construction of such materials by mimicking metabolism from scratch based on bioengineering has not yet been achieved.

View Article and Find Full Text PDF

Culture conditions including pH, nutrient concentration and temperature strongly influence the properties of a microbial strain by affecting many factors such as the microbial membrane and metabolism. We present a microfluidic chip for screening pH and nutrient content with a concentration gradient generator connected to eight parallel suspension culture loops and another chip for the screening of temperature with four different temperature zones under suspension culture loops. Bacteria grow much faster on chips than in test tubes, and yet interestingly, on-chip screening of culture conditions for E.

View Article and Find Full Text PDF

Microfluidic systems could, in principle, enable high-throughput breeding and screening of microbial strains for industrial applications, but parallel and scalable culture and detection chips are needed before complete microbial selection systems can be integrated and tested. Here we demonstrate a scalable multi-channel chip that is capable of bacterial suspension culture. The key invention is a multi-layered chip design, which enables a single set of control channels to function as serial peristaltic pumps to drive parallel culture chamber loops.

View Article and Find Full Text PDF

The aim of this work was to research a bioprocess for bioethanol production from raw sweet potato by Saccharomyces cerevisiae at laboratory, pilot and industrial scales. The fermentation mode, inoculum size and pressure from different gases were determined in laboratory. The maximum ethanol concentration, average ethanol productivity rate and yield of ethanol after fermentation in laboratory scale (128.

View Article and Find Full Text PDF

The effect of the extraction from female moths Samia cynthia ricini (family Saturniidae) on menopausal syndrome was studied in order to search for an effective traditional Chinese medicine to menopausal syndrome and offer a theoretical support for the further research on Samia cynthia ricini. Aged, nonreproductive female mice was used as the model and randomly divided into three groups: control, ethanol extraction group and diethylstilbestrol (DES) group according to the medicine applied. After 4 weeks of treatment, keratinization rates of vagina epithelia, indexes of organs, serum concentrations of estradiol (E2) and progesterone (P), the bone mineral contents (BMC) and the morphological changes of ovary and uterus were measured.

View Article and Find Full Text PDF