Black phosphorus is a two-dimensional layer material with promising applications due to its many excellent physicochemical properties, including high carrier mobility, ambipolar field effect and unusual in-plane anisotropy. Currently, BP has been widely used in biomedical engineering, photocatalysis, semiconductor devices, and energy storage electrode materials. However, the unique structure of BP makes it highly chemically active, leading to its easy oxidation and degradation in air, which limits its practical applications.
View Article and Find Full Text PDFChirality on the molecular or nanometer scale is particularly significant in chemistry, materials science, and biomedicine. Chiral electrochemical reactions on solid surfaces are currently a hot research topic. Herein, a chiral solid surface is constructed in aqueous solutions by mixing chiral molecules, d- and l-glutamic, with γ-FeO and FeO nanoparticles (NPs) and MnFeO colloidal nanocrystal assembly (CNA).
View Article and Find Full Text PDFTwo-dimensional (2D) nanostructured catalysts have attracted great attention in many important fields, including energy applications and chemical industry. In this study, PdCu nanosheet assemblies (NSAs) have been synthesized and investigated as electrocatalysts for direct ethanol fuel cells in an alkaline medium. A great number of active sites on the nanosheets of PdCu NSAs for ethanol electro-oxidation are exposed, where the electron structures are optimized combined with the second element copper.
View Article and Find Full Text PDFSynthesizing alloyed bimetallic electrocatalysts with a three-dimensional (3D) structure assembly have arouse great interests in electrocatalysis. We synthesized a class of alloyed PdPb/Pd nanosheet assemblies (NSAs) composed of a two-dimensional (2D) sheet structure with adjustable compositions via an oil bath approach at a low temperature. Both the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images reveal the successful formation of the nanosheet structure, where the morphology of PdPb/Pd NSAs can be regulated by adjusting the atomic mole ratio of Pb and Pb metal precursors.
View Article and Find Full Text PDFAlthough many researchers have made great efforts to pursue promising high-efficiency electrocatalysts, a formidable challenge remains for designing excellent palladium-based electrocatalysts for commercializing direct liquid fuel cells. This study reports the synthesis of bimetallic PdPb nanoparticles (NPs) via a mixed solution containing cetyl trimethyl ammonium bromide as the capping agent. Alloyed PdPb NPs are formed, where the size of the NPs increases as Pb atoms are introduced gradually.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2021
The synthesis of metal nanometer electrocatalysts with a two-dimensional (2D) structure or rich active sites has become a research hotspot in electrocatalysis. In this work, surfactant hexadecyltrimethylammonium bromide (CTAB) was used to assist the synthesis and assembly of Pd ultrathin nanosheet with the help of Mo(CO) in the start system. Pd nanochain composed of nanoparticles is obtained under the same condition, replacing CTAB with carrageenan only.
View Article and Find Full Text PDF