Real-time 3D reconstruction has been applied in many fields, calling for many ongoing efforts to improve the speed and accuracy of the used algorithms. Phase shifting profilometry based on the Lucas-Kanade optical flow method is a fast and highly precise method to construct and display the three-dimensional shape of objects. However, in this method, a dense optical flow calculation is required for the modulation image corresponding to the acquired deformed fringe pattern, which consumes a lot of time and affects the real-time performance of 3D reconstruction and display.
View Article and Find Full Text PDFHigh resolution, real-time three-dimensional (3D) measurement plays an important role in many fields. In this paper, a multi-directional dynamic real-time phase measurement profilometry based on improved optical flow is proposed. In a five-step phase shifting dynamic measurement, pixel matching is needed to make the pixels one-to-one corresponding in five patterns.
View Article and Find Full Text PDFThis paper presents a dynamic phase measurement profilometry (PMP) method based on the simulated annealing algorithm. In dynamic PMP for rigid objects, pixel matching is an effective method to make one-to-one pixel correspondence in each captured pattern. However, pixel matching by the global traversing algorithm takes up most of the time in the whole reconstruction process.
View Article and Find Full Text PDF