Publications by authors named "Mingyong Zhou"

Love surface acoustic wave (L-SAW) sensors are miniaturized, easy to integrate, and suitable for detection in liquid environments. In this paper, an L-SAW sensor with a thin SiN-SiO double-covered layer was proposed for samples with small mass loads. The output response, phase velocity of the acoustic wave, and the mass sensitivity were analyzed using the finite element method (FEM).

View Article and Find Full Text PDF

As a polymer molding technology developed in recent years, ultrasonic plasticizing micro-injection molding has great advantages in the manufacture of micro-nano parts by virtue of low energy consumption, less material waste and reduced filling resistance. However, the process and mechanism of transient viscoelastic heating for polymers under ultrasonic high-frequency hammering are unclear. The innovation of this research is that a combination of experiment and MD (molecular dynamics) simulation was adopted to study the transient viscoelastic thermal effect and microscopic behavior of polymers with different process parameters.

View Article and Find Full Text PDF

Wall slip directly affects the molding quality of plastic parts by influencing the stability of the filling flow field during micro injection molding. The accurate modeling of wall slip in nanochannels has been a great challenge for pseudoplastic polymer melts. Here, an effective modeling method for polymer melt flow in nanochannels based on united-atom molecular dynamics simulations is presented.

View Article and Find Full Text PDF

In this research, the effects of fumed silica (FS) on the Ultraviolet (UV)-ink rheological behavior and processing windows were discussed. Objects using different concentrations of FS inks were printed by the modified UV-Direct ink writing (DIW) printer. The function of fumed silica in the ink-based system has been verified, and the processing scope has been expended with a suitable amount of FS combined with the UV light.

View Article and Find Full Text PDF

Current methods for the early diagnosis of cancer can be invasive and costly. In recent years, exosomes have been recognized as potential biomarkers for cancer diagnostics. The common methods for quantitative detection of exosomes, such as nanoparticle tracking analysis (NTA) and flow cytometry, rely on large-scale instruments and complex operation, with results not specific for cancer.

View Article and Find Full Text PDF

The bonding of microfluidic chips is an essential process to enclose microchannels or microchambers in a lab-on-a-chip. In order to improve the bonding quality while reducing the fabrication time, a solvent-assisted bonding strategy was proposed to seal the microchannels immediately after the cover sheet and substrate chip was injection molded in a single mold. Proper organic solvents were selected and the influences of solvent ratios on the surface roughness, microchannel morphology, and contact angle of microfluidic chips were investigated.

View Article and Find Full Text PDF

Understanding the properties of polymer-metal interfacial friction is critical for accurate prototype design and process control in polymer-based advanced manufacturing. The transient polymer-metal interfacial friction characteristics are investigated using united-atom molecular dynamics in this study, which is under the boundary conditions of single sliding friction (SSF) and reciprocating sliding friction (RSF). It reflects the polymer-metal interaction under the conditions of initial compaction and ultrasonic vibration, so that the heat generation mechanism of ultrasonic plasticization microinjection molding (UPMIM) is explored.

View Article and Find Full Text PDF

Acoustic manipulation of microparticles and cells has attracted growing interest in biomedical applications. In particular, the use of acoustic waves to concentrate particles plays an important role in enhancing the detection process by biosensors. Here, we demonstrated microparticle concentration within sessile droplets placed on the hydrophobic surface using the flexural wave.

View Article and Find Full Text PDF

Efficient and rapid particle enrichment at the submicron scale is essential for research in biomedicine and biochemistry. Here, we demonstrate an acoustofluidic method for submicron particle enrichment within a spinning droplet driven by a unidirectional transducer. The unidirectional transducer generates intense sound energy with relatively low attenuation.

View Article and Find Full Text PDF

Due to the adhesion between the polymer melt and nickel (Ni) mold insert in the micro injection molding process, deformation defects frequently occur when the microstructures are demolded from the insert. In this study, self-assembled alkanethiols were applied to modify the surface of Ni mold insert to reduce its surface energy. Experimental trials were undertaken to explore the effect of alkanethiols coating on the replication quality.

View Article and Find Full Text PDF

When the part geometry scaling down from macro to microscale level, the size-induced surface effect becomes significant in the injection molding process. The adhesion between polymer and nickel (Ni) mold insert during the process can lead to defects in necking, warping and deformation of microstructure. In this study, the self-assembled monolayers (SAMs) with low surface energy were deposited on the Ni surface to reduce the adhesion and further improve the demolding quality of the microstructure.

View Article and Find Full Text PDF

A fast mixing is critical for subsequent practical development of microfluidic devices, which are often used for assays in the detection of reagents and samples. The present work sets up computational fluid dynamics simulations to explore the flow characteristic and mixing mechanism of fluids in cross-shaped mixers within the laminar regime. First, the effects of increasing an operating parameter on local mixing quality along the microchannels are investigated.

View Article and Find Full Text PDF

Injection molding is one of the main techniques for manufacturing microfluidic chips. As an important stage, the demolding process in injection molding will directly affect the quality of the functional unit of microfluidic chips (polymer microchannels), thus limiting the realization of its functions. In this study, molecular dynamics (MD) simulations on the demolding process were carried out to investigate the influence of diamond-like carbon (DLC) coating on the channel deformation.

View Article and Find Full Text PDF

Polymer-metal hybrid structures can reduce the weight of components while ensuring the structural strength, which in turn save cost and subsequently fuel consumption. The interface strength of polymer-metal hybrid structure is mainly determined by the synergistic effects of interfacial interaction and mechanical interlocking. In this study, the wetting behavior of polypropylene (PP) melt on metal surface was studied by molecular dynamics simulation.

View Article and Find Full Text PDF

Injection molding is an economical and effective method for manufacturing polymer parts with nanostructures and residual stress in the parts is an important factor affecting the quality of molding. In this paper, taking the injection molding of polymethyl methacrylate (PMMA) polymer in a nano-cavity with an aspect ratio of 2.0 as an example, the formation mechanism of residual stresses in the injection molding process was studied, using a molecular dynamics simulation.

View Article and Find Full Text PDF

Hybrid fiber reinforced thermoplastic composites are receiving important attention in lightweight applications. The fabrication process of hybrid thermoplastic composites is that discontinuous fiber reinforced thermoplastics are injected onto the continuous fiber reinforced thermoplastics by over-molding techniques. The key issue during this process is to get a reliable interfacial bonding strength.

View Article and Find Full Text PDF

Injection molding is one of the most potential techniques for fabricating polymeric products in large numbers. The filling process, but also the demolding process, influence the quality of injection-molded nanostructures. In this study, nano-cavities with different depth-to-width ratios (D/W) were built and molecular dynamics simulations on the demolding process were conducted.

View Article and Find Full Text PDF

Thermal bonding technology is the most commonly used approach in bonding injection-molded microfluidic chips. Although the bonding mechanism is still under debate, the molecular dynamics (MD) method can provide insight into the bonding process on a macromolecular level. In this study, MD simulations for thermal bonding of PMMA substrate and cover sheet were performed.

View Article and Find Full Text PDF

The development of highly efficient membranes technology using low-pressure driven filtration process, is one of the principal challenges in the wastewater treatment field, especially those aimed at the removal of trace heavy metals. In this work, a novel positively charged tight ultrafiltration (PCTUF) membrane was developed to remove heavy metal cations (Mn, Co, Ni, Zn and Cd) from contaminated waters via electrostatic repulsion mechanism. The PCTUF membrane was fabricated from a new polymer with poly (vinyl chloride co dimethylaminoethyl methacrylate), P (VC-co-DMA) via a nonsolvent induce phase separation (NIPS) process and following facile surface quaternization.

View Article and Find Full Text PDF

Alginate hydrogel beads have been extensively investigated as drug delivery systems due to promising gastric environment stability. In the present study, alginate hydrogel beads were prepared with Ca or Fe to serve as the loading vehicles for egg yolk low density lipoprotein (LDL)/pectin nanogels. Scanning electron microscope was carried out to confirm the successful incorporation of nanogels into the beads.

View Article and Find Full Text PDF

Egg yolk low density lipoprotein (LDL)/polysaccharide nanogels are newly explored as oral delivery systems with promising encapsulation potentials. Nonetheless, the stability of nanogels against aggregation in gastrointestinal tract remains a challenge. Therefore, chemical crosslinking by 1-ethyl-3-(3-dimethylaminopropyl) and carbodiimide/N-hydroxysuccinimide (EDC/NHS) was adopted to improve the gastrointestinal stability of nanogels.

View Article and Find Full Text PDF

In this work, a new and novel organic solvent-free and synthetic surfactant-free method was reported to fabricate stable solid lipid nanoparticles (SLNs) from stearic acid, sodium caseinate (NaCas) and pectin, as well as water. Melted stearic acid was directly emulsified into an aqueous phase containing NaCas and pectin, followed by pH adjustment and thermal treatment to induce the formation of a compact and dense polymeric coating which stabilized SLNs. The preparation procedures and formulations were comprehensively optimized.

View Article and Find Full Text PDF

Exploitation of lipid nanoparticles for oral delivery of nutrients and drugs is limited by their poor stability under gastrointestinal tract and low loading capacity, unless a high concentration of synthetic surfactants is formulated. The main objective of present study is to design a series of new formulations for solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) that are suitable for potential oral delivery applications, using natural biopolymers, i.e.

View Article and Find Full Text PDF

The toxicity associated with concentrated synthetic surfactants and the poor stability at gastrointestinal condition are two major constraints for practical applications of solid lipid nanoparticles (SLN) as oral delivery vehicles. In this study, a synthetic surfactant-free and cross-linker-free method was developed to fabricate effective, safe, and ultra-stable lipid-polymer hybrid nanoparticles (LPN). Bovine serum albumin (BSA) and dextran varying in molecular weights were first conjugated through Maillard reaction and the conjugates were exploited to emulsify solid lipid by a solvent diffusion and sonication method.

View Article and Find Full Text PDF

Five polysaccharides, pectin, carboxymethyl cellulose (CMC), gum arabic, carrageenan and alginate, were studied to form complex nanogels with egg yolk low density lipoprotein (LDL). All nanogels were smaller than 85nm with high negative zeta potential, while LDL/carrageenan and LDL/alginate nanogels exhibited more heterogeneous size distribution. Fourier transform infrared spectrum suggested that hydrogen bonds, hydrophobic and electrostatic interactions were involved to form nanogels.

View Article and Find Full Text PDF