Publications by authors named "Mingying Tang"

Osteosarcoma (OS) is closely related to the dysregulation of various intracellular signaling pathways, especially the PI3K/Akt signaling pathway. Reportedly, HSP90 was responsible for phospho-Akt stabilization, and both AKT1 and HSP90 were upregulated within osteosarcoma. Herein, we demonstrated that AKT1 and HSP90 mRNA and protein expression were upregulated within osteosarcoma tissues and cells; AKT1 knockdown significantly inhibited OS cell viability.

View Article and Find Full Text PDF

Magnesium-based biomaterials are attracting increasingly more attention for orthopedic applications based on their appropriate mechanical properties, biodegradability, and favorable biocompatibility. However, the high corrosion rate of these materials remains to be addressed. In this study, porous β-Ca3(PO4)2/Mg-Zn (β-TCP/Mg-Zn) composites were fabricated via a powder metallurgy method.

View Article and Find Full Text PDF

Inducing the osteogenic differentiation from bone marrow stromal cells (BMSCs) might be a potent strategy for treating bone loss and nonunion during fracture and improving fracture healing. Among several signaling pathways involved, mitogen-activated protein kinases (MAPKs) have been reported to play a critical role. Magnesium (Mg)-based alloys, including Mg-Zn alloy, have been used clinically as implants in the musculoskeletal field and could promote BMSC osteogenic differentiation.

View Article and Find Full Text PDF

Osteosarcoma (OS) accounts for 9 percent of cancer-related deaths in young people. The PI3K/Akt signaling, a well-known carcinogenic signaling pathway in human cancer, cooperates with other signaling pathways such as Wnt signaling to promote cancer progression. Wnt7b, as a transforming member of the Wnt family, could activate mTORC1 through PI3K-AKT signaling and is upregulated in OS.

View Article and Find Full Text PDF

Background: Rapid corrosion rates are a major impediment to the use of magnesium alloys in bone tissue engineering despite their good mechanical properties and biodegradability. Zinc is a promising alloy element, and it is an effective grain refiner for magnesium. β-Ca(PO) (β-TCP) is widely used for bone regeneration because of its good biocompatibility, and it also has a similar chemical and crystal structure to human bone.

View Article and Find Full Text PDF

A single-chain variable fragment (scFv) targeting vascular endothelial growth factor receptor 2 was previously generated from a phage display library in our laboratory. However, it has shortened half-life and lacks Fc fragment for effector cell recognition. To address these challenges, a ligand of NK-cell receptor NKG2D was fused to the scFv and created a fusion protein scFv-major histocompatibility complex class I-related chain A (MICA), which is expected to recognize tumor cells through the scFv moiety and stimulate NK cells through the MICA.

View Article and Find Full Text PDF

We propose and demonstrate a locally deformed-ring (LDR) hybrid microlaser to realize stable unidirectional emission from a silicon waveguide. The coupled modes eliminate the competition between clockwise (CW) and counter-clockwise (CCW) modes, and the highly unidirectional characteristics are achieved with an enhanced mode quality factor based on a locally deformed notch in the LDR resonator. Using a divinylsiloxane-benzocyclobutene bonding technique, a LDR hybrid microlaser is fabricated vertically coupled to a silicon waveguide with a radius of 20 μm, a ring width of 4 μm and a notch width of 500 nm.

View Article and Find Full Text PDF

MHC class I polypeptide-related sequence A (MICA), which is normally expressed on cancer cells, activates NK cells via NK group 2-member D pathway. However, some cancer cells escape NK-mediated immune surveillance by shedding membrane MICA causing immune suppression. To address this issue, we designed an antibody-MICA fusion targeting tumor-specific antigen (vascular endothelial growth factor receptor 2, VEGFR2) based on our patented antibody (mAb04) against VEGFR2.

View Article and Find Full Text PDF

Binding of MHC class I-related chain molecules A and B (MICA/B) to the natural killer (NK) cell receptor NK group 2, member D (NKG2D) is thought critical for activating NK-mediated immunosurveillance. Angiogenesis is important for tumor growth and interfering with angiogenesis using the fully human IgG1 anti-VEGFR2 (vascular endothelial growth factor receptor 2) antibody (mAb04) can be effective in treating malignancy. In an effort to make mAb04 more effective we have generated a novel antibody fusion protein (mAb04-MICA) consisting of mAb04 and MICA.

View Article and Find Full Text PDF

MHC class I-related chain A (MICA) is a principal immunoligand of the natural killer (NK) cell receptor NK group 2, member D (NKG2D) and plays a key role in NK cell-mediated immune recognition. Shedding of MICA from tumor cells leads to immunosuppression. To reconstitute the immunosurveilance function of NK cells, we constructed a fusion protein rG7S-MICA and explored its potential anti-tumor activity against hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

The stimulatory natural killer group 2 member D (NKG2D) lymphocyte receptor, initially discovered and expressed mostly on natural killer (NK) cells, T cells and natural killer T cells, can promote tumor immune surveillance. However, with increasing tumor grade, tumors themselves express NKG2D to self-stimulate oncogenic pathways. To confirm that cancer cells themselves express NKG2D, we have now investigated the role of the tumoral NKG2D in NK cell-mediated immune surveillance.

View Article and Find Full Text PDF

A hybrid spiral-ring laser vertically coupled to a silicon waveguide is demonstrated to achieve stable and unidirectional output theoretically and experimentally. The mode competition between clockwise (CW) and counter-clockwise (CCW) modes is eliminated due to the mode coupling in a spiral resonator. The simulation results indicate that the CCW and CW direction traveling waves are dominant components, respectively, for the spiral resonator without and with an output waveguide.

View Article and Find Full Text PDF

Mode selection in square resonator semiconductor microlasers is demonstrated by adjusting the width of the output waveguide coupled to the midpoint of one side. The simulation and experimental results reveal that widely tunable single mode lasing can be realized in square resonator microlasers. Through adjusting the width of the output waveguide, the mode interval of the high-Q modes can reach four times of the longitudinal mode interval.

View Article and Find Full Text PDF

Major Histocompatibility Complex class I-related chain molecules A (MICA) and receptor Natural killer group 2 member D (NKG2D) are important membrane proteins with immunosurveillance properties which could serve as therapeutic targets for immunotherapy. However, expression of MICA and NKG2D in E. coli often leads to the formation of inclusion bodies.

View Article and Find Full Text PDF