Publications by authors named "Mingyi Yao"

Anthracycline antibiotics, namely, doxorubicin (DOX) and daunorubicin, are among the most widely used anticancer therapies, yet are notoriously associated with severe myocardial damage due to oxidative stress and mitochondrial damage. Studies have indicated the strong pharmacological properties of Berberine (Brb) alkaloid, predominantly mediated via mitochondrial functions and nuclear networks. Despite the recent emphasis on Brb in clinical cardioprotective studies, pharmaceutical limitations hamper its clinical use.

View Article and Find Full Text PDF

Berberine (Brb) is an active isoquinoline alkaloid occurring in various common plant species, with well-known potential for cancer therapy. Earlier reports has shown that Brb not only augments the efficacy of antineoplastic chemotherapy and radiotherapy, but it also exhibits direct anti-mitotic, and pro-apoptotic activities, plus significant anti-angiogenic and anti-metastatic activities in a variety of solid tumors. Notwithstanding its low systemic toxicity, a few pharmaceutical limitations severely hamper the application of Brb in cancer therapy (namely, very slight aqueous solubility and exceedingly low membrane permeability; combined with poor systemic pharmacokinetic, PK, profile).

View Article and Find Full Text PDF

Pulmonary hypertension (PH) is a leading cause of death in sickle cell disease (SCD) patients. Hemolysis and oxidative stress contribute to SCD-associated PH. We have reported that the protein thrombospondin-1 (TSP1) is elevated in the plasma of patients with SCD and, by interacting with its receptor CD47, limits vasodilation of distal pulmonary arteries ex vivo.

View Article and Find Full Text PDF

Aims: Thrombospondin-1 (TSP1) is a ligand for CD47 and TSP1 mice are protected from pulmonary hypertension (PH). We hypothesized the TSP1-CD47 axis is upregulated in human PH and promotes pulmonary arterial vasculopathy.

Methods And Results: We analyzed the molecular signature and functional response of lung tissue and distal pulmonary arteries (PAs) from individuals with (n = 23) and without (n = 16) PH.

View Article and Find Full Text PDF

Berberine (Brb) is an active alkaloid occurring in various common plant species, with well-recognized potential for cancer therapy. Brb not only augments the efficacy of antineoplastic chemotherapy and radiotherapy but also exhibits direct antimitotic and proapoptotic actions, along with distinct antiangiogenic and antimetastatic activities in a variety of tumors. Despite its low systemic toxicity, several pharmaceutical challenges limit the application of Brb in cancer therapy (ie, extremely low solubility and permeability, very poor pharmacokinetics (PKs), and oral bioavailability).

View Article and Find Full Text PDF

Pulmonary hypertension is recognized as a leading cause of morbidity and mortality in patients with sickle cell disease (SCD). We now report benchtop phenotyping from the explanted lungs of the first successful lung transplant in SCD. Pulmonary artery smooth muscle cells (PASMCs) cultured from the explanted lungs were analyzed for proliferate capacity, superoxide (O2 (•-)) production, and changes in key pulmonary arterial hypertension (PAH)-associated molecules and compared with non-PAH PASMCs.

View Article and Find Full Text PDF

Ischemia reperfusion injury (IRI) causes tissue and organ injury, in part, through alterations in tissue blood flow and the production of reactive oxygen species. The cell surface receptor signal-regulatory protein-α (SIRP-α) is expressed on inflammatory cells and suppresses phagocytosis, but the function of SIRP-α in IRI has not been determined. We reported previously that the matricellular protein thrombospondin-1 is upregulated in IRI.

View Article and Find Full Text PDF
Article Synopsis
  • This study looked at how well a special type of blood vessel made from a fast-breaking plastic worked over a long time in rats.
  • They made small tubes from a material called PGS, which was strengthened with tiny fibers, and placed these tubes in the rats' arteries.
  • After a year, the grafts turned into new arteries that looked and acted a lot like the original ones, showing promise for future medical uses!
View Article and Find Full Text PDF

Objective: Although the matricellular protein thrombospondin-1 (TSP1) is highly expressed in the vessel wall in response to injury, its pathophysiological role in the development of vascular disease is poorly understood. This study was designed to test the hypothesis that TSP1 stimulates reactive oxygen species production in vascular smooth muscle cells and induces vascular dysfunction by promoting oxidative stress.

Methods And Results: Nanomolar concentrations of TSP1 found in human vascular disease robustly stimulated superoxide (O(2)(•-)) levels in vascular smooth muscle cells at both cellular and tissue level as measured by cytochrome c and electron paramagnetic resonance.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) remains a significant source of early and delayed renal transplant failure. Therapeutic interventions have yet to resolve this ongoing clinical challenge although the reasons for this remain unclear. The cell surface receptor CD47 is widely expressed on vascular cells and in tissues.

View Article and Find Full Text PDF

Matricellular proteins play diverse roles in modulating cell behavior by engaging specific cell surface receptors and interacting with extracellular matrix proteins, secreted enzymes, and growth factors. Studies of such interactions involving thrombospondin-1 have revealed several physiological functions and roles in the pathogenesis of injury responses and cancer, but the relatively mild phenotypes of mice lacking thrombospondin-1 suggested that thrombospondin-1 would not be a central player that could be exploited therapeutically. Recent research focusing on signaling through its receptor CD47, however, has uncovered more critical roles for thrombospondin-1 in acute regulation of cardiovascular dynamics, hemostasis, immunity, and mitochondrial homeostasis.

View Article and Find Full Text PDF
Article Synopsis
  • Pulmonary arterial hypertension (PAH) is a serious lung disease that makes it hard for the heart to work properly due to high blood pressure in the lungs.
  • Scientists found that a protein called CD47 is turned on in people and animals with PAH, which causes increased stress in the lungs by disrupting other important proteins.
  • Blocking the activity of CD47 can help protect against PAH by reducing damage and keeping the heart healthier.
View Article and Find Full Text PDF

Nitric oxide (NO) drives pro-survival responses in vascular cells and limits platelet adhesion, enhancing blood flow and minimizing thrombosis. The matricellular protein thrombospondin-1 (TSP1), through interaction with its receptor CD47, inhibits soluble guanylyl cyclase (sGC) activation by NO in vascular cells. In vascular smooth muscle cells (VSMCs) both intracellular cGMP and cAMP regulate adhesion, contractility, proliferation, and migration.

View Article and Find Full Text PDF