Publications by authors named "Mingyan Dong"

Colon cancer in patients with situs inversus totalis is rarely associated with dextrocardia, and chemotherapy is commonly used for treatment. Central venous access devices are used to administer intravenous fluids and chemotherapy in patients with colon cancer. Compared with peripherally inserted central catheters and Hickman-type tunneled catheters, totally implantable vascular access devices (TIVADs) are safer and more effective.

View Article and Find Full Text PDF

The eukaryotic translation initiation factor 4 (EIF4) family is a major contributor to the recruitment of mRNAs to ribosomes during the initial translation stage in eukaryotes, whose dysregulation either allows for cancer transformation or prevents disordered cancerous cell growth. Circular RNAs (circRNAs), which exhibit distinctive structures and are widely expressed in eukaryotes, are anticipated to be clinical diagnostic biomarkers for cancer therapy. There is considerable evidence that EIF4s can influence the biogenesis, transport, and function of circRNAs and, in turn, circRNAs can control the expressions of EIF4s through certain molecular pathways.

View Article and Find Full Text PDF

Prostate cancer, recognized as a "cold" tumor, has an immunosuppressive microenvironment in which regulatory T cells (Tregs) usually play a major role. Therefore, identifying a prognostic signature of Tregs has promising benefits of improving survival of prostate cancer patients. However, the traditional methods of Treg quantification usually suffer from bias and variability.

View Article and Find Full Text PDF

Abnormal expression of proteins, including catalytic and expression dysfunction, is directly related to the development of various diseases in living organisms. Reactive oxygen species (ROS) could regulate protein expression by redox modification or cellular signal pathway and thus influence the development of disease. Determining the expression level and activity of these ROS-associated proteins is of considerable importance in early-stage disease diagnosis and the identification of new drug targets.

View Article and Find Full Text PDF

We synthesized an ultrasensitive probe TP-Golgi for the two-photon ratiometric fluorescence imaging of Golgi polarity. Probe TP-Golgi possesses a large Stokes shift, excellent sensitivity and good selectivity to quantitatively detect environmental polarity. By application of TP-Golgi, we found that the Golgi polarity increased obviously in the kidneys of mice with AKI.

View Article and Find Full Text PDF

Amyloid-β (Aβ/Aβ) peptide with a length of 40 or 42 residues is naturally secreted as cleavage product of the amyloid precursor protein, and formation of Aβ aggregates in a patient's brain is a hallmark of Alzheimer's disease (AD). Therefore, disaggregation and disruption provide potential therapeutic approaches to reduce, inhibit, and even reverse Aβ aggregation. The disaggregation/inhibition effect of the inhibitors applies generally to both Aβ and Aβ aggregations.

View Article and Find Full Text PDF

In this study, structural and mechanical properties of a series of models of Aβ42 (one- and two-fold) and Aβ40 (two- and three-fold) fibrils have been computed by using all-atom molecular dynamics simulations. Based on calculations of the twist angle (θ) and periodicity (v=360d/θ), oligomers formed by 20, 11, and 13 monomers were found to be the smallest realistic models of three-fold Aβ40 , one-fold Aβ42 , and two-fold Aβ42 fibrils, respectively. Our results predict that the Aβ40 fibrils initially exist in two staggered conformations [STAG(+2) and STAG(+1)] and then undergo a [STAG(+2)→STAG(+1)] transformation in a size-dependent manner.

View Article and Find Full Text PDF

The aggregation of amyloid-β (Aβ) peptide induced by Cu(2+) is a key factor in development of Alzheimer's disease (AD), and metal ion chelation therapy enables treatment of AD. Three CQi (i = 1, 2, and 3 with R = H, Cl, and NO2, respectively) drugs had been verified experimentally to be much stronger inhibitors than the pioneer clioquinol (CQ) in both disaggregation of Aβ40 aggregate and reduction of toxicity induced by Cu(2+) binding at low pH. Due to the multiple morphologies of Cu(2+)-Aβ40 complexes produced at different pH states, we performed a series of molecular dynamics simulations to explain the structural changes and morphology characteristics as well as intrinsic disaggregation mechanisms of three Cu(2+)-Aβ40 models in the presence of any of the three CQi drugs at both low and high pH states.

View Article and Find Full Text PDF

Malignant gliomas are primary brain tumors with high rates of morbidity and mortality; they are the fourth most common cause of cancer death. Novel diagnostic and therapeutic techniques based on nanomaterials provide promising options in the treatment of malignant gliomas. In order to evaluate the potential of FePt nanoparticles (NPs) for malignant glioma therapy, FePt NPs with different surface coatings and components were tunably synthesized using oleic acid/oleylamine (OA/OA) and cysteines (Cys) as the capping agents, respectively.

View Article and Find Full Text PDF