Correction for 'Novel anilino quinazoline-based EGFR tyrosine kinase inhibitors for treatment of non-small cell lung cancer' by Lili Yang , , 2021, , 443-455. DOI: 10.1039/D0BM00293C.
View Article and Find Full Text PDFPrecision medicine is playing a pivotal role in strategies of cancer therapy. Unlike conventional one-size-fits-all chemotherapy or radiotherapy modalities, precision medicine could customize an individual treatment plan for cancer patients to acquire superior efficacy, while minimizing side effects. Precision medicine in cancer therapy relies on precise and timely tumor biological information.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of non-small cell lung cancer (NSCLC). EGFR-TKI positron emission tomography (PET) probes based on the central quinazoline core show great potential for NSCLC diagnosis, and pre-clinical and clinical therapy monitoring. In our previous research, anilino quinazoline based PET probe, N-(3-chloro-4-fluorophenyl)-7-(2-(2-(2-(2-F-fluoroethoxy) ethoxy) ethoxy) ethoxy)-6-methoxyquinazolin-4-amine (F-MPG), have been developed, and it has been successfully demonstrated to be a powerful non-invasive imaging tool for differentiating EGFR mutation status and stratifying NSCLC patients for EGFR-TKI treatment in a clinical study (n = 75 patients).
View Article and Find Full Text PDFThe problem of distributed power allocation in wireless sensor network (WSN) localization systems is investigated in this paper, using the game theoretic approach. Existing research focuses on the minimization of the localization errors of individual agent nodes over all anchor nodes subject to power budgets. When the service area and the distribution of target nodes are considered, finding the optimal trade-off between localization accuracy and power consumption is a new critical task.
View Article and Find Full Text PDF