Publications by authors named "Mingwen Li"

Rapid freezing and vitrification using sucrose are two simple and cost-effective sperm cryopreservation methods. However, it is still unclear which method is better and what the optimal concentration of sucrose is. This study aimed to determine the optimal sucrose concentration for human sperm cryopreservation and compare the cryoprotective effects of rapid freezing versus vitrification using different closed straw systems in terms of sperm motility and DNA integrity.

View Article and Find Full Text PDF

Rapid freezing and vitrification are becoming popular for sperm freezing in humans; however, basic and critical issues relevant to sperm cryopreservation remain to be resolved. The aims of the present study were to study the effects of osmolality of freezing medium, sperm concentrations, thawing methods, and sugars (sucrose and trehalose) on sperm motility and DNA integrity by rapid freezing using 0.5 ml standard straws loaded with 100 µl sperm each.

View Article and Find Full Text PDF

Although thousands of genetically modified mouse strains have been cryopreserved by sperm freezing, the likelihood of cryorecovery success cannot be accurately predicted using conventional sperm parameters. The objective of the present study was to assess the extent to which measurement of a sperm DNA fragmentation index (DFI) can predict sperm quality and fertility after cryopreservation. Using a modified TUNEL assay, we measured and correlated the DFI of frozen-thawed sperm from 83 unique mutant mouse strains with sperm count, motility and morphology.

View Article and Find Full Text PDF

Currently the most popular mouse sperm freezing medium is R18SM3+MTG containing 18% raffinose, 3% skim milk, and 0.5 mM monothioglycerol (MTG), but there is no information available about whether MTG and other antioxidants can cryoprotect mouse sperm DNA integrity. It is also uncertain if sucrose can be used successfully for sperm cryopreservation.

View Article and Find Full Text PDF

Background: Although many mechanical heart valves are replaced worldwide each year, mechanical valve dysfunction (MVD) remains one of the most common complications following this surgery. In an attempt to improve the postoperative and surgical management of MVD, the study plan was to investigate a group of patients who had undergone redo mechanical valve replacement to treat MVD at the authors' institution.

Methods: A total of 52 consecutive patients diagnosed with MVD underwent redo mechanical valve replacement between January 2007 and December 2013.

View Article and Find Full Text PDF

Different protocols incorporating methyl-β-cyclodextrin (MBCD) and reduced glutathione (GSH) have been reported to improve IVF recovery of cryopreserved mouse sperm on a C57BL/6 (J and N) genetic background. However, it is not clear which IVF protocol is most appropriate when using the various methods to cryorecover sperm with different sperm quality and sample volumes. Therefore, in the present study we correlated sperm motility with fertilization rate and compared the efficiency of different IVF methods using various sperm samples so as to establish general guidelines for mouse sperm cryorecovery by IVF.

View Article and Find Full Text PDF

Background: Star GK valves were widely used in China, and we studied the clinical follow-up results of patients with Star GK valve implants for more than one year. 

Methods: Clinical data were collected from those patients who had Star GK valve implants for over one year. Patients were divided into three groups: (1) AVR group: received aortic valve replacement surgery.

View Article and Find Full Text PDF
Article Synopsis
  • Successful production of genetically modified mice relies on the successful transmission of mutant genes from chimeras, which can sometimes fail due to male infertility or health issues.
  • In cases where natural mating does not work, sperm from chimeras can be harvested for assisted reproductive technologies like in vitro fertilization (IVF) to help achieve gene transmission.
  • The study found that many chimeras are infertile, with a key indicator being the quality of sperm; by analyzing coat color and sperm quality, researchers could better choose which chimeras to use for IVF to rescue gene transmission.
View Article and Find Full Text PDF

Background: Modification of cryoprotective medium (CPM) R18S3 (18% raffinose and 3% skim milk) by addition of monothioglycerol (MTG) or L-glutamine (Glu) has been shown to improve in vitro fertilization (IVF) using mouse sperm cryopreserved in cryostraws. However, whether these CPMs can be applied effectively to sperm cryopreserved in cryovials is unknown.

Objective: The study was to determine the comparative effectiveness of using R18S3, R18S3+Glu (100mM and 87 mM), or R18S3+MTG (477 µM) to cryopreserve various sample volumes of mouse sperm in cryovials and cryostraws.

View Article and Find Full Text PDF

Cold transport of epididymides from genetically modified mice is an efficient alternative to the shipment of live animals between research facilities. Mouse sperm from epididymides cold-stored for short periods can maintain viability. We previously reported that cold storage of mouse epididymides in Lifor® perfusion medium prolonged sperm motility and fertilization potential and that the sperm efficiently fertilized oocytes when reduced glutathione was added to the fertilization medium.

View Article and Find Full Text PDF

Procedures for cryopreserving embryos vary considerably, each having its specific advantages and disadvantages in terms of technical feasibility, embryo survival yield, temperature permissibility and species- or strain-dependent applicability. Here we report a high osmolality vitrification (HOV) method that is advantageous in these respects. Cryopreservation by vitrification is generally very simple, but, unlike slow freezing, embryos should be kept at a supercooling temperature (below -130°C) to avoid cryodamage.

View Article and Find Full Text PDF

In the present report we studied the safety, efficacy and efficiency of using an infrared laser to facilitate IVF by assessing fertilization, development and birth rates after laser-zona drilling (LZD) in 30 subfertile genetically modified (GM) mouse lines. We determined that LZD increased the fertilization rate four to ten times that of regular IVF, thus facilitating the derivation of 26 of 30 (86.7%) GM mouse lines.

View Article and Find Full Text PDF

Apolipoprotein E (Apoe)-deficient knockout mice were used to test the hypothesis that mutant mice preserved as evaporatively dried (ED) spermatozoa, stored at -80 °C for 6 months, and then recovered by ICSI will exhibit the same phenotype as before preservation. The birth rate of mice recovered by ICSI of evaporatively dried spermatozoa was lower than that of fresh spermatozoa (17.5 vs 38.

View Article and Find Full Text PDF

Background: Sperm desiccation is an attractive approach for sperm preservation. In this study, we examined the feasibility and efficiency of intracytoplasmic sperm injection using vacuum-dried rhesus macaque sperm in CZB medium supplemented with 10% fetal bovine serum.

Methods: A total of 109 MII oocytes were injected with 69 fresh ejaculated sperm and 40 vacuum-dried sperm.

View Article and Find Full Text PDF

Although the derivation of mice by intracytoplasmic sperm injection (ICSI) using freeze-dried sperm has been demonstrated previously, a comprehensive analysis of their viability, health, and fertility has not. The purpose of the present study was to determine the extent to which ICSI using freeze-dried sperm stored at 4 degrees C for 1-2 months from mice on either an inbred (C57BL/6J) or hybrid (B6D2F1/J) genetic background results in genomic instability and/or phenotypic abnormality in mice and two generations of their progeny. Fertilization rates (number of 2-cells per injected oocytes) using ICSI of fresh and freeze-dried sperm were similar within and between mouse strains, although fewer freeze-dried sperm-derived embryos than fresh sperm-derived embryos developed to blastocysts in vitro (C57BL/6J and B6D2F1/J) and liveborn pups in vivo (B6D2F1/J only).

View Article and Find Full Text PDF

Intracytoplasmic sperm injection (ICSI) is an important assisted reproductive technology (ART). Due to deployment difficulties and low efficiency of the earlier (conventional) version of ICSI, especially in the mouse, a piezo-assisted ICSI technique had evolved as a popular ART methodology in recent years. An important and remaining problem with this technique, however, is that it requires small amounts of mercury to stabilize the pipette tip when piezoelectric force pulses are applied.

View Article and Find Full Text PDF

Combination of evaporative drying and frozen storage at -80 degrees C has been used successfully to preserve hybrid B6D2F1 mouse spermatozoa. To determine whether this method can be applied equally well to inbred mice, spermatozoa of C57BL/6J and FVB/ NJ mice were evaporatively dried and stored for 1 mo at -80 degrees C before being used for intracytoplasmic sperm injection (ICSI) to produce live offspring. After weaning, 1 male and 1 female mouse from each litter were randomly selected at 8 wk of age for natural mating to produce live offspring.

View Article and Find Full Text PDF

In this study, we sought to determine the extent to which mitogenic growth factors affect the survival and development of cloned mouse embryos in vitro. Cloned embryos derived by intracytoplasmic nuclear injection (ICNI) of cumulus cell nuclei into enucleated oocytes were incubated in culture media supplemented with EGF and/or TGF-alpha for 4 days. Compared to control, treatment with either growth factor significantly increased the blastocyst formation rate, the total number of cells per blastocyst, the cell ratio of the inner cell mass and the trophectoderm (ICM:TE ratio), and EGF-R protein expression in cloned embryos.

View Article and Find Full Text PDF

Fresh and frozen-thawed rhesus monkey sperm were analyzed for DNA damage using the comet assay and for chromosome damage by cytogenetic analysis after intracytoplasmic sperm injection (ICSI) into mouse oocytes. The percentage of fresh sperm with damaged DNA in ejaculated semen was 0 to 2.7% (n = 5).

View Article and Find Full Text PDF

The ataxia telangiectasia mutated (ATM) gene product maintains genome integrity and initiates cellular DNA repair pathways following exposures to genotoxic agents. ATM also plays a significant role in meiotic recombination during spermatogenesis. Fertilization with sperm carrying damaged DNA could lead to adverse effects in offspring including developmental defects or increased cancer susceptibility.

View Article and Find Full Text PDF

The extent to which mitogenic growth factors influence embryo development is not well characterized. We sought to determine the effect of epidermal growth factor (EGF) and transforming growth factor alpha (TGFalpha) on naturally fertilized (in vivo-derived) and in vitro-fertilized mouse embryos, compared with that on cloned (intracytoplasmic nuclear injection-derived) mouse embryos, in which EGF and TGFalpha expression is markedly reduced. Immunoneutralization of EGF, TGFalpha, and EGF receptor by using specific antibodies significantly reduced the blastocyst development rate (in vivo-derived: 66%, 63%, and 63%, respectively; in vitro-fertilized: 57%, 55%, and 56%, respectively), increased the number of apoptotic nuclei (in vivo-derived: 9%, 10%, and 9%, respectively; in vitro-fertilized: 13%, 13%, and 13%, respectively), decreased the total number of cells (in vivo-derived: 87%, 85%, and 86%, respectively; in vitro-fertilized: 86%, 85%, and 86%, respectively), and increased the inner cell mass:trophectoderm ratios (in vivo-derived: 1:2.

View Article and Find Full Text PDF

Testicular maturation and sperm production throughout the life of the male form the basis of male fertility. It is difficult to elucidate the intricate processes controlling testicular maturation and spermatogenesis in primates in vivo due to the long time span required for sexual maturation and also to the lack of accessible in vitro or in vivo models of primate spermatogenesis. Ectopic xenografting of neonatal testis tissue into mice provides an accessible model to study and manipulate the propagation and differentiation of male germ cells from immature donor animals.

View Article and Find Full Text PDF

Genetically altered mice are important research tools for the study of human development and disease. Occasionally, whether or not related to the genetic mutation, mice may become infertile with age and, thus, risk loss of the mutant line. Under conditions in which assisted reproduction techniques (ARTs), such as in vitro fertilization, are unsuccessful, a new strategy, intracytoplasmic sperm injection (ICSI), may be applicable.

View Article and Find Full Text PDF

Female macaques produced isoantibodies to a limited number of sperm surface proteins following immunization with sperm components released by phosphatidylinositol-specific phospholipase C (PI-PLC). Washed, acrosome-intact, fixed sperm injected into rabbits elicited a major immune response to one of the same PI-PLC-released proteins, which was shown to be a sperm surface-coating protein. After purification and digestion of the glycoprotein, four peptides were analyzed for amino acid sequence, and all had 100% homology with an epididymal secretory protein, ESP13.

View Article and Find Full Text PDF

PH-20 is a glycoprotein located on the surface of the sperm plasma membrane and on the inner acrosomal membrane. The best understood function of sperm surface PH-20 is its hyaluronidase activity, which results in hydrolysis of the hyaluronic acid-rich cumulus matrix during sperm penetration of this extracellular oocyte investment. In this study, we investigated whether alterations in the secondary and tertiary structures of sperm surface PH-20 would affect its enzyme activity.

View Article and Find Full Text PDF