Background: Knee osteoarthritis (OA) is still challenging to prevent or treat. Enhanced endoplasmic reticulum (ER) stress and increased pyroptosis in chondrocytes may be responsible for cartilage degeneration. This study aims to investigate the effect of ER stress on chondrocyte pyroptosis and the upstream regulatory mechanisms, which have rarely been reported.
View Article and Find Full Text PDFPathological hyperphosphorylation and aggregation of microtubule-associated Tau protein contribute to Alzheimer's Disease (AD) and other related tauopathies. Currently, no cure exists for Alzheimer's Disease. Aptamers offer significant potential as next-generation therapeutics in biotechnology and the treatment of neurological disorders.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) is implicated in tumor metastasis and therapeutic resistance. It remains a challenge to target cancer cells that have undergone EMT. The Snail family of key EMT-inducing transcription factors directly binds to and transcriptionally represses not only epithelial genes but also a myriad of additional genomic targets that may carry out significant biological functions.
View Article and Find Full Text PDFFunctional nucleic acids (FNAs) are garnering tremendous interest owing to their high modularity and unique bioactivity. Three-dimensional FNAs have been developed to overcome the issues of nuclease degradation and limited cell uptake. We have developed a new facile approach to the synthesis of multiple three-dimensional FNA nanostructures by harnessing photo-polymerization-induced self-assembly.
View Article and Find Full Text PDFChromatin topological organization is instrumental in gene transcription. Gene-enhancer interactions are accommodated in the same CTCF-mediated insulated neighborhoods. However, it remains poorly understood whether and how the 3D genome architecture is dynamically restructured by external signals.
View Article and Find Full Text PDFBackground: Asthma is a complicated chronic inflammatory disorder characterized by airway inflammation and bronchial hyperresponsiveness. Group 2 innate lymphoid cells (ILC2) are tissue-resident innate effector cells that can mediate airway inflammation and hyperresponsiveness through production of IL-5, IL-13 and VEGFA. ILC2 in asthma patients exhibit an activated phenotype.
View Article and Find Full Text PDFZhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
May 2019
Objective: To summarize the effect of cartilage progenitor cells (CPCs) and microRNA-140 (miR-140) on the repair of osteoarthritic cartilage injury, and analyze their clinical prospects.
Methods: The recent researches regarding the CPCs, miR-140, and repair of cartilage in osteoarthritis (OA) disease were extensively reviewed and summarized.
Results: CPCs possess the characteristics of self-proliferation, expression of stem cell markers, and multi-lineage differentiation potential, and their chondrogenic ability is superior to other tissues-derived mesenchymal stem cells.
Group 2 innate lymphoid cells (ILC2) are tissue-resident, long-lived innate effector cells implicated in allergy and asthma. Upon activation, mature ILC2 rapidly secrete large amounts of type-2 cytokines and other effector molecules. The molecular pathways that drive ILC2 activation are not well understood.
View Article and Find Full Text PDFNAC with a transmembrane (TM) motif1-like (NTL) transcription factors, containing three regions: the N-terminal NAC domain (ND), the middle regulation region (RR), and the C-terminal TM domain, belong to the tail-anchored proteins. Although these NTLs play numerous essential roles in plants, their subcellular distribution and the mechanism of translocation into the nucleus (NU) remain unclear. In this study, we found that most of the full-length NTLs were localized in the endoplasmic reticulum (ER), with the exception of NTL11 and NTL5, which were restricted to the NU.
View Article and Find Full Text PDF