Hierarchically structural particles (HSPs) are highly regarded as favorable nanomaterials for superhydrophobic coating due to their special multiscale structure and surface physicochemical properties. However, most of the superhydrophobic coatings constructed from HSPs are monofunctional, constraining their broader applications. Moreover, traditional methods for constructing HSPs mostly rely on complicated chemical routes and template removal.
View Article and Find Full Text PDFA surfactant-free soft-templating method has been used to prepare polysiloxane hollow nanoparticles with a controllable shape. This method is simple and has the potential for large-scale preparation. For the first time, we successfully obtained hollow polysiloxane nanoparticles with different shapes, including eccentric hollow polysiloxane microspheres (EHPM), apple-like hollow polysiloxane microparticles (AHPM), and bowl-like hollow polysiloxane microparticles (BHPM), by simply changing the solvent.
View Article and Find Full Text PDFEccentric hollow polysiloxane microspheres (EHPMs) have attracted significant attention due to their potential in energy storage, drug delivery, and heterogeneous catalysis applications. However, their preparation pathways are often particularly complex. Therefore, it is critical to find a simple method for preparing EHPMs.
View Article and Find Full Text PDFPolymers that integrate multiple functions into one system broaden the application range of materials, but it remains a great challenge to obtain polymer materials with simultaneously high strength, high toughness, and high self-healing rate. In this work, we prepared waterborne polyurethane (WPU) elastomers using Schiff bases containing disulfide and acylhydrazone bonds (PD) as chain extenders. Acylhydrazone forming a hydrogen bond not only acts as a physical cross-linking point, which promotes the microphase separation of polyurethane to increase the thermal stability, tensile strength, and toughness of the elastomer, but also serves as a "clip" to integrate various dynamic bonds together to synergistically reduce the activation energy of the polymer chain movement and endow the molecular chain with faster fluidity.
View Article and Find Full Text PDFIn this article, chlorotrifluoroethylene (CTFE)-based fluorocarbon composite latexes and their coatings are successfully fabricated by an environmentally friendly preparation method based on a new multifunctional waterborne polyurethane (MFWPU) dispersion. It is worth noting that the MFWPU acts as the sole system stabilizer as well as microreactor and simultaneously endows the composite coating with excellent double self-healing performance and adhesion. Moreover, the introduction of a dynamic disulfide bond in the polyurethane dispersion entrusts the coating with excellent scratch self-healing performance.
View Article and Find Full Text PDFBlack phosphorus/two-dimensional (2D) metal-organic framework (BP@MOF) heterojunctions were synthesized via templated growth of 2D MOF-Fe/Co nanoplatelets on the surface of exfoliated BP nanosheets at room temperature. Because Fe and Co ions were absorbed onto the BP surface through coordination with the lone pair electrons of 2D BP, the BP@MOF heterojunction had an intimate interface with strong interactions. Electrochemical oxygen and hydrogen evolution reactions were studied using BP@MOF as the electrocatalyst.
View Article and Find Full Text PDFGemini quaternary ammonium (GQA), a type of cationic surfactant, exhibits excellent micellization ability and acts as a cell internalization promoter to increase the permeability of the cell membrane. GQA is sensitive to ionic solutions, which disturb its stabilization and leads to the rapid degradation of its polymer micelles due to its unique hydrophilic N structure. However, the effect of negatively charged moieties in the polymer chains of GQA on its action in polymer micelles, typically with regard to its micellization and biological performance, remains unclear.
View Article and Find Full Text PDFThe disulfide bond has emerged as a promising redox-sensitive switch for smart polymeric micelles, due to its properties of rapid response to the reductive environment and spatiotemporally-controlled therapeutic agent delivery. However, the dilemma of multifunctional nanomedicine is that the more intelligent the functionalities integrated into a system, the vaguer the understanding of the structure and interaction between the multi-functional moieties becomes. To better understand the interaction between the disulfide bond and methoxy polyethylene glycol (mPEG), and their effects on the biophysicochemical characterization of micelles, we developed a series of polyurethane micelles containing various densities of disulfide bonds and bearing different molecular weights of mPEG.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2021
The current syntheses of spheres-on-sphere (SOS) microsphere, which possesses both hollow cavity and hierarchical structure, mainly rely on complicated routes and template removal. In this study, a one pot nanoengineering strategy inspired by the automatic transport behavior of water in plants is successfully developed to fabricate SOS microsphere in tandem with a traditional soft template method in the preparation of hollow structure. Amphiphilic siloxane oligomers generated in situ from methyltriethoxylsilane (MTES) under acidic conditions are anchored on the surface of soft template St monomer droplets, sequentially completing hydrolysis-polycondensation and forming a mesoporous polysilsesquioxane (PSQ) shell.
View Article and Find Full Text PDFA facile synthesis is reported of two-dimensional (2D) bimetallic (Fe/Co=1:2) metal-organic frameworks (MOF, ca. 2.2 nm thick) via simple stirring of the reaction mixture of Fe/Co salts and 1,4-benzene dicarboxylic acid (1,4-BDC) in the presence of triethylamine and water at room temperature.
View Article and Find Full Text PDFTraditional methods for the construction of hollow particles with a hierarchical shell mainly rely on complicated chemical routes and removal of the templates. Herein, hollow mesoporous silica particles with a sphere-on-sphere (SOS) structure were successfully synthesized via a one-pot method using a novel "in situ synergistic soft-hard double template" strategy, that is, styrene (St) droplets as a soft template and in situ polymerized PS nano-domains as a hard template. The pre-hydrolysate derived from the silica precursor methyltriethoxysilane could anchor on the surface of the St droplets due to its amphiphilicity and then continue hydrolysis-condensation to form the mesoporous silica shell (MSS).
View Article and Find Full Text PDFFor the first time, we report an interesting transition from conventional core-shell polymer/SiO2 particles to self-stable snowman-like particles, which can be achieved by adding a low-boiling point oil-soluble monomer because the volatile monomer not only plays a lubrication role, but also acts as a gas "motor" to drive the silica precursor polycondensate migration.
View Article and Find Full Text PDFGraphene oxide (GO) is expected to be used in the field of waterborne polyurethane (WPU) anti-corrosive coatings due to its excellent barrier property, but the poor dispersibility of GO limits its application. The hydrophilic modification of GO, although improving its dispersity, will greatly reduce its anti-corrosive property. Here, a new method is provided to avoid seeking an appropriate modifier blindly.
View Article and Find Full Text PDFCommonly synthetic polyethylene glycol polyurethane (PEG-PU) hydrogels possess poor mechanical properties, such as robustness and toughness, which limits their load-bearing application. Hence, it remains a challenge to prepare PEG-PU hydrogels with excellent mechanical properties. Herein, a novel double-crosslinked (DC) PEG-PU hydrogel was fabricated by combining chemical with physical crosslinking, where trimethylolpropane (TMP) was used as the first chemical crosslinker and polyphenol compound tannic acid (TA) was introduced into the single crosslinked PU network by simple immersion process.
View Article and Find Full Text PDFThe fabrication and functionalization of polymeric yolk-shell microspheres (YSMs), possessing a hollow shell and a movable core, is interesting but challenging in materials science. Here we report the facile fabrication, morphology control, and fluorescent modification of polymeric YSMs, which have a spherical core of poly(vinylidene fluoride) (PVDF) and a hollow shell of poly(styrene-co-glycidyl methacrylate). First, flower-like microspheres with core-shell structures are synthesized via seeded surface nucleation in an emulsion polymerization of styrene, glycidyl methacrylate, and divinylbenzene by using PVDF microparticles as seeds.
View Article and Find Full Text PDFIn the past few decades, Poly(vinylidene fluoride)/Polymethylmethacrylate (PVDF/PMMA) binary blend has attracted substantial attention in the scientific community due to possible intriguing mechanical, optical and ferroelectric properties that are closely related to its multiple crystal structures/phases. However, the effect of PMMA phase on the polymorphism of PVDF, especially the relationship between miscibility and polymorphism, remains an open question and is not yet fully understood. In this work, three series of particle blends with varied levels of miscibility between PVDF and PMMA were prepared via seeded emulsion polymerization: PVDF⁻PMMA core⁻shell particle (PVDF@PMMA) with high miscibility; PVDF/PMMA latex blend with modest miscibility; and PVDF@c⁻PMMA (crosslinked PMMA) core⁻shell particle with negligible miscibility.
View Article and Find Full Text PDFHerein, we demonstrate a facile approach to prepare anisotropic poly(tert-butyl acrylate)/polystyrene (PtBA/PS) composite particles with controllable morphologies by soap-free seeded emulsion polymerization (SSEP). In the first step, noncrosslinked PtBA seeds with self-stabilizing polar functional groups (e.g.
View Article and Find Full Text PDFA simple route is reported to synthesize colloidal particle clusters (CPCs) from self-assembly of in situ poly(vinylidene fluoride)/poly(styrene-co-tert-butyl acrylate) [PVDF/P(St-co-tBA)] Janus particles through one-pot seeded emulsion single electron transfer radical polymerization. In the in situ Pickering-like emulsion polymerization, the tBA/St/PVDF feed ratio and polymerization temperature are important for the formation of well-defined CPCs. When the tBA/St/PVDF feed ratio is 0.
View Article and Find Full Text PDFThis work reports a facile novel approach to prepare asymmetric poly(vinylidene fluoride)/polystyrene (PVDF/PS) composite latex particles with controllable morphologies using one-step soap-free seeded emulsion polymerization, i.e., surface-initiated single electron transfer radical polymerization (SET-RP) of styrene (St) at the surface of PVDF seed particles.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2013
A simple and elegant approach to fabricate anisotropic P(VC-co-AAEM)/PS nanoparticles with controllable morphologies via emulsifier-free seeded emulsion polymerization is presented. Non-cross-linked P(VC-co-AAEM) seeds with hydrophilic surface are first synthesized through copolymerization of vinyl chloride (VC) and acetoacetoxyethyl methacrylate (AAEM), which are used to prepare P(VC-co-AAEM)/PS NPs with multiple bulges by SEP of styrene. Electron microscopy observation indicates that the content of AAEM in seeds is crucial to control the phase separation and morphology of the composite NPs.
View Article and Find Full Text PDF