Publications by authors named "Mingshuo Ma"

Rock image classification represents a challenging fine-grained image classification task characterized by subtle differences among closely related rock categories. Current contrastive learning methods prevalently utilized in fine-grained image classification restrict the model's capacity to discern critical features contrastively from image pairs, and are typically too large for deployment on mobile devices used for in situ rock identification. In this work, we introduce an innovative and compact model generation framework anchored by the design of a Feature Positioning Comparison Network (FPCN).

View Article and Find Full Text PDF

Ethyl-thioglycolate-modified FeO@ZnS nanoparticles (FeO@ZnS-SH) were successfully prepared using a simple chemical precipitation method. The introduction of ethyl thioglycolate better regulated the surface distribution of ZnS, which can act as a recognition group and can cause a considerable quenching of the fluorescence intensity of the magnetic fluorescent nanoprobe, FeO@ZnS-SH. Benefiting from stable fluorescence emission, the magnetic fluorescent nanoprobe showed a highly selective fluorescent response to Ag+ in the range of 0-400 μM, with a low detection limit of 0.

View Article and Find Full Text PDF

The development of ultrasensitive in situ detection techniques for monitoring hypobromous acid (HBrO) levels in the biological systems is of great significance to reveal its complex pathological and physiological effects. A simple mitochondria-targetable hydrazine-based near-infrared (NIR) fluorescent probe (Mito-NIR) for detecting HBrO in the mitochondria of live cells is presented in this paper. Probe Mito-NIR displays the ultrafast (< 5 s) response for HBrO.

View Article and Find Full Text PDF

Recently, more and more evidence indicated that intracellular HOCl plays a crucial role in the regulation of inflammation and apoptosis, while excessive HOCl has an impact on human health problems. So, the development of methods for sensitive detection of HOCl is very vital to reveal its various physiological and pathological functions. In this paper, we have described a simple fluorescent probe for selective detection of HOCl, whereas for higher concentrations of other biological important substances, the probe almost does not respond.

View Article and Find Full Text PDF

A new rhodol-derived fluorescent probe 1 with picolinate as the recognition receptor was designed and simply synthesized using a one-step reaction. With the concentration of added Cu increases, it gradually turns pink, so the effect of naked eye detection can be achieved. The detection limit of probe 1 for Cu is 42 nM, and the linear detection range was 0-2 μM.

View Article and Find Full Text PDF

A fluorescent probe 1 has been successfully developed to determine human serum albumin (HSA). Probe 1 expresses a dramatic fluorescence enhancement to HSA without interference from other amino acids. Under the optimal conditions, the calibration graphs are linear over the range of 0 - 13.

View Article and Find Full Text PDF

The ground and excited states, charge injection/transport, and phosphorescence properties of eleven carbazole- and triphenylamine-functionalized Ir(III) complexes were investigated by using the DFT method. By analyzing the spin-orbit coupling (SOC) matrix elements, radiative decay rate constants k(r), and the electronic structures and energies at the S₀(opt) and T₁(opt) states, it was possible to rationalize the order of the experimental phosphorescence quantum yields of a series of Ir(III) complexes and to predict that [Ir(Nph-2-Cz-tz)3] has a higher phosphorescence quantum yield than [Ir(TPA-tz)3] (TPA=triphenylamine, tz=thiazolyl, Cz=carbazole, Nph=N-phenyl). Carbazole-functionalized Ir(III) complexes were shown to be efficient phosphorescent materials that have not only fast but also balanced electron/hole-transport performance as well as high phosphorescence quantum yields.

View Article and Find Full Text PDF