Developing non-toxic and high-performance colloidal semiconductor quantum dots (CQDs) represents the inevitable route toward CQD-enabled technologies. Herein, the spectral and dynamic properties of heavy-metal-free ZnSeTe-based CQDs are investigated by transient absorption spectroscopy and theoretical modeling. We for the first time decode the ultrafast hot carrier trapping (<2 ps) and band-edge carrier trapping processes (∼6 ps) in the CQD system, which plagues the emission performance.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2021
In this work, the nonadiabatic energy relaxation mechanism of hemicyanines for UV photoprotection were investigated by using the density functional theory (DFT) and time-dependent density functional theory (TDDFT) method for the first time. The absorption spectra and potential energy surfaces (PESs) of four hemicyanines with different positions of substituents were presented. The maximum absorption peaks of the four hemicyanines are located in the UVA region.
View Article and Find Full Text PDFIn this work, we have first demonstrated that the potassium cation doping effect on photoluminescence (PL) regulation of CHNHPbBr (CHNH=MA) colloidal perovskite quantum dots (QDs) is significantly different from the other alkali cation doping effects. The PL intensity will be generally enhanced with the increase doping amounts of other alkali cations. Herein, we have unveiled that the PL of the potassium-doped perovskite QDs is initially prompted by the potassium ions doping and then inhibited with further growing doping amount of the potassium ions.
View Article and Find Full Text PDF