Heart failure (HF) impairs resting myocardial energetics, myocardial mitochondrial performance, and maximal oxygen uptake (VO). Exercise training is included in most rehabilitation programs and benefits HF patients. However, the effect of exercise intensity on cardiac mitochondrial respiration and concentrations of the key bioenergetic metabolites phosphocreatine (PCr), adenosine triphosphate (ATP), and inorganic phosphate (Pi) is unclear.
View Article and Find Full Text PDFThe metabolism and performance of myocardial and skeletal muscle are impaired in heart failure (HF) patients. Exercise training improves the performance and benefits the quality of life in HF patients. The purpose of the present study was to determine the metabolic profiles in myocardial and skeletal muscle in HF and exercise training using MRS, and thus to identify targets for clinical MRS in vivo.
View Article and Find Full Text PDFPurpose: Exercise training increases aerobic capacity and is beneficial for health, whereas low aerobic exercise capacity is a strong independent predictor of cardiovascular disease and premature death. The purpose of the present study was to determine the metabolic profiles in a rat model of inborn low versus high capacity runners (LCR/HCR) and to determine the effect of inborn aerobic capacity, aging, and exercise training on skeletal muscle metabolic profile.
Methods: LCR/HCR rats were randomized to high intensity low volume interval treadmill training twice a week or sedentary control for 3 or 11 months before they were sacrificed, at 9 and 18 months of age, respectively.
Calcineurin (CN), a unique protein phosphatase, plays an important role in immune regulation. In this study we used CN as a target enzyme to investigate the immunosuppressive properties of a series of natural compounds from Garcinia mangostana L., and discovered an active compound, isogarcinol.
View Article and Find Full Text PDF