Publications by authors named "Mingqin Jiang"

Article Synopsis
  • Hard carbon materials are effective anodes for sodium-ion batteries due to their cost-efficiency and high capacity, but they struggle with low initial efficiency and slow sodium transport due to electrolyte compatibility issues.
  • A new strategy using methyltriphenylphosphonium bromide (MTPPB) enhances the electrolyte by optimizing interfacial chemistry, leading to improved sodium storage and reduced resistance in the battery.
  • The hard carbon sodium cells achieve impressive performance metrics, including a 96.6% initial efficiency and long cycling life, suggesting that this electrolyte reconfiguration can significantly enhance the effectiveness of sodium-ion batteries.
View Article and Find Full Text PDF

NaV(PO)F is recognized as a promising cathode for high energy density sodium-ion batteries due to its high average potential of ∼3.95 V (vs Na/Na). A high-voltage-resistant electrolyte is of high importance due to the long duration of 4.

View Article and Find Full Text PDF

While the availability of arsenic (As) in soil is well known to be highly correlated with the presence of iron (Fe) oxides and humic acid (HA) in the soil, the relationship between Fe oxides and HA and As species in the soil is less well understood. In this study, As speciation in an unsaturated soil in the presence of external HA and green synthesized Fe oxide nanoparticles (FeNPs) showed that As(V) was mainly distributed to the specifically-bound (F2), amorphous and poorly-crystalline hydrous oxides of Fe, Al (F3) and the well-crystallized hydrous oxides of Fe and Al (F4). While As(III).

View Article and Find Full Text PDF

Modified kaolinite clay with 25% (w/w) aluminium sulphate and unmodified kaolin were investigated as adsorbents to remove Pb(II) from aqueous solution. The results show that amount of Pb(II) adsorbed onto modified kaolin (20mg/g) was more than 4.5-fold than that adsorbed onto unmodified kaolin (4.

View Article and Find Full Text PDF

Adsorption of cationic methylene blue and anionic orange II onto unmodified and surfactant-modified zeolites was studied using a batch equilibration method. The effects of equilibrium time, solution pH, and sorption temperature were examined. The results suggested that 2% sodium dodecyl benzenesulfonate (SDBS)- and 3% sodium dodecyl sulfate (SDS)-modified zeolites had higher adsorption capacities for methylene blue than the unmodified zeolite, while 2% cetylpyridinium bromide hexadecyl (CPB)- and 2% hexadecylammonium bromide (HDTMA)-modified zeolites were the best adsorbents for orange II.

View Article and Find Full Text PDF