Microplastic pollution and heat waves, as damaging aspects of human activities, have been found to affect crop production and nitrogen (N) cycling in agroecosystems. However, the impacts of the combination of heat waves and microplastics on crop production and quality have not been analyzed. We found that heat waves or microplastics alone had slight effects on rice physiological parameters and soil microbial communities.
View Article and Find Full Text PDFPolystyrene (PS) often found in the ocean is one of the most commonly used plastic polymers in the world and can exist in different particle sizes. In particular, PS degrades relatively faster and widely accumulates at the nanoscale. Therefore, the penetration is strong and it is easy to enter the body and cause adverse effects.
View Article and Find Full Text PDFAlgae dominate primary production in groundwater and oceans and play a critical role in global carbon dioxide fixation and climate change but are threatened by ongoing global warming events (such as heatwaves) and increasing microplastic (MP) pollution. However, whether and how ecologically important phytoplankton respond to the combined effects of warming and MPs remain poorly understood. We thus investigated the combined effects of these factors on carbon and nitrogen storage and the mechanisms underlying the alterations in the physiological performance of a model diatom, Phaeodactylum tricornutum, exposed to a warming stressor (25 °C compared with 21 °C) and polystyrene MP acclimation.
View Article and Find Full Text PDFThe use of graphene-family materials modified by nanosized palladium (Pd/GFMs) has intensified rapidly in various fields; however, the effects of environmental factors (e.g., natural organic matter (NOM)) on the transformation and ecotoxicity of Pd/GFMs remain largely unknown.
View Article and Find Full Text PDF