Publications by authors named "Mingming Zhai"

The quality difference of corn largely depends on parental selection. Herein, the structure, digestive characteristics, and expression patterns of starch-related genes of two supersweet maize hybrids and their parents were studied. The structural analysis revealed that the starch of supersweet corn is round or oval, and the particles are smaller compared to those of normal corn.

View Article and Find Full Text PDF

The modification of starch through agricultural practices is becoming increasingly significant for producing healthy foodstuffs and raw materials for industrial applications, consequently gaining momentum in academic research. This study examined how three different planting densities influenced the distribution of granule sizes, multi-scale structural characteristics, and in vitro digestibility of maize starch. The results showed that planting density significantly enhanced grain yield and relative crystallinity, and significant increases were also observed in the contents of both rapidly and slowly digestible starch.

View Article and Find Full Text PDF

In the analysis of electroencephalography (EEG), entropy can be used to quantify the rate of generation of new information. Entropy has long been known to suffer from variance that arises from its calculation. From a sensor's perspective, calculation of entropy from a period of EEG recording can be treated as physical measurement, which suffers from measurement noise.

View Article and Find Full Text PDF

Plant-specific VQ proteins have crucial functions in the regulation of plant growth and development, as well as in plant abiotic stress responses. Their roles have been well established in the model plant ; however, the functions of the potato VQ proteins have not been adequately investigated. The VQ protein core region contains a short FxxhVQxhTG amino acid motif sequence.

View Article and Find Full Text PDF

As a plant-specific endoreplication regulator, the SIAMESE-RELATED () family (a cyclin-dependent kinase inhibitor) plays an important role in plant growth and development and resistance to stress. Although the genes of the maize () family have been studied extensively, the (Zm00001eb231280) gene has not been reported. In this study, the function of this gene was characterized by overexpression and silencing.

View Article and Find Full Text PDF

Acute high-altitude hypoxia can lead to intestinal damage and changes in gut microbiota. Sustained and reliable oxygen enrichment can resist hypoxic damage at high altitude to a certain extent. However, it remains unclear whether oxygen enrichment can protect against gut damage and changes in intestinal flora caused by acute altitude hypoxia.

View Article and Find Full Text PDF

Background: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, and is related to disturbed lipid metabolism and redox homeostasis. However, a definitive drug treatment has not been approved for this disease. Studies have found that electromagnetic fields (EMF) can ameliorate hepatic steatosis and oxidative stress.

View Article and Find Full Text PDF

Bivariate flow cytometry (FC) sorting with forward scatter (FSC) and side scatter (SSC) is a recently established novel technique to separate starch granules. However, the forming mechanism of starch FC-dependent population patterns (i.e.

View Article and Find Full Text PDF

Memory impairment is one of the neuropsychological effects of hypobaric hypoxia (HH), which can be associated with programmed cell death, such as apoptosis and ferroptosis. Emerging evidence indicates crosstalk between apoptosis and ferroptosis, while the crosstalk between HH-induced apoptosis and ferroptosis in the hippocampus has not been clarified. Here, microarray profiles were extracted to analyze the differentially expressed genes with and without HH exposure, and keratin 18 (Krt18) was found to be a potential gene related to both apoptosis and ferroptosis.

View Article and Find Full Text PDF

Purpose: The prevalence of nonalcoholic fatty liver disease (NAFLD), which has recently become known as metabolic-associated fatty liver disease (MAFLD), has risen. However, pharmacotherapies for this disease have not been approved. Electromagnetic fields (EMFs) have excellent bioeffects on multiple diseases.

View Article and Find Full Text PDF

Background: Bone marrow mesenchymal stem cells (BMSCs) have been used as important cell-based tools for clinical applications. Oxidative stress-induced apoptosis causes a low survival rate after transplantation, and the underlying mechanisms remain unknown. The endoplasmic reticulum (ER) and mitochondria are vital organelles regulated by adenosine monophosphate (AMP)-activated protein kinase (AMPK), especially during oxidative stress injury.

View Article and Find Full Text PDF

Polymers, especially polyethylene (PE), are widely employed as insulating materials in electrical power transmission systems. However, the insulation still faces the problem of space charge, which distorts the electric field distribution and accelerates electrical aging. Experimental results show that after the fluorination process, less charge injection occurs compared with pure PE.

View Article and Find Full Text PDF

Growing evidence has shown that pulsed electromagnetic fields (PEMF) can modulate bone metabolism in vivo and regulate the activities of osteoblasts and osteoclasts in vitro. Osteocytes, accounting for 95% of bone cells, act as the major mechanosensors in bone for transducing external mechanical signals and producing cytokines to regulate osteoblastic and osteoclastic activities. Targeting osteocytic signaling pathways is becoming an emerging therapeutic strategy for bone diseases.

View Article and Find Full Text PDF

The effects of load-induced interstitial fluid shear stress (FSS) on instantaneous signaling response of osteocytes (e.g., calcium signaling) have been well documented.

View Article and Find Full Text PDF

Repetitive fatigue loading can induce microdamage accumulation in bone matrix, which results in impaired mechanical properties and increased fracture susceptibility. However, the spatial distribution and time-variant process of microdamage accumulation in fatigue-loaded skeleton, especially for linear microcracks which are known to initiate bone remodeling, remain not fully understood. In this study, the time-varying process of the morphology and distribution of microcracks in rat ulnae subjected to uniaxial compressive fatigue loading was investigated.

View Article and Find Full Text PDF

Pulsed electromagnetic fields (PEMF) have been proven to be effective for promoting bone mass and regulating bone turnover both experimentally and clinically. However, the exact mechanisms for the regulation of PEMF on osteoclastogenesis as well as optical exposure parameters of PEMF on inhibiting osteoclastic activities and functions remain unclear, representing significant limitations for extensive scientific application of PEMF in clinics. In this study, RAW264.

View Article and Find Full Text PDF

Osteoporosis is a skeletal metabolic disease characterized by reduced bone mass and a high susceptibility to fractures, in which osteoblasts and osteoclasts are highly involved in the abnormal bone remodeling processes. Recently, low‑magnitude, high‑frequency whole‑body vibration has been demonstrated to significantly reduce osteopenia experimentally and clinically. However, the underlying mechanism regarding how osteoblastic activity is altered when bone tissues adapt to mechanical vibration remains elusive.

View Article and Find Full Text PDF

Treatment of osseous defects remains a formidable clinical challenge. Porous titanium alloys (pTi) have been emerging as ideal endosseous implants due to the excellent biocompatibility and structural properties, whereas inadequate osseointegration poses risks for unreliable long-term implant stability. Substantial evidence indicates that pulsed electromagnetic fields (PEMF), as a safe noninvasive method, inhibit osteopenia/osteoporosis experimentally and clinically.

View Article and Find Full Text PDF

Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported.

View Article and Find Full Text PDF

The fungus Clonostachys rosea is widely distributed all over the world. The destructive force of this fungus, as a biological control agent, is very strong to lots of plant pathogenic fungi. As part of the ongoing search for antibiotics from fungi obtained from soil samples, the secondary metabolites of C.

View Article and Find Full Text PDF

Insulin resistance (IR) is the hallmark of type 2 diabetes mellitus (T2DM), which is one of the most important chronic noncommunicable diseases. Effective and feasible strategies to treat IR are still urgently needed. Previous research studies reported that whole body vibration (WBV) was beneficial for IR in clinical; however, its underlying mechanisms remains unknown.

View Article and Find Full Text PDF

Substantial evidence indicates that pulsed electromagnetic fields (PEMF) could accelerate fracture healing and enhance bone mass, whereas the unclear mechanism by which PEMF stimulation promotes osteogenesis limits its extensive clinical application. In the present study, effects and potential molecular signaling mechanisms of PEMF on in vitro osteoblasts were systematically investigated. Osteoblast-like MC3T3-E1 cells were exposed to PEMF burst (0.

View Article and Find Full Text PDF

The focus of this review is placed on the chemical structures from the species of the genus Talaromyces reported with reference to their biological activities. 221 secondary metabolites, including 43 alkaloids and peptides, 88 esters, 31 polyketides, 19 quinones, 15 steroid and terpenoids, and 25 other structure type compounds, have been included, and 66 references are cited.

View Article and Find Full Text PDF

Emerging evidence substantiates the potential of porous titanium alloy (pTi) as an ideal bone-graft substitute because of its excellent biocompatibility and structural properties. However, it remains a major clinical concern for promoting high-efficiency and high-quality osseointegration of pTi, which is beneficial for securing long-term implant stability. Accumulating evidence demonstrates the capacity of low-amplitude whole-body vibration (WBV) in preventing osteopenia, whereas the effects and mechanisms of WBV on osteogenesis and osseointegration of pTi remain unclear.

View Article and Find Full Text PDF

The green Chinese onion (Allium fistulosum L.), which is widely cultivated and has been naturalized in many places, is an important spice and vegetable in East and Southeast Asia. It is used to treat the common cold in China.

View Article and Find Full Text PDF