Rhizobacteria have the potential to enhance phytoremediation by generating substances that stimulate plant development and influence the effectiveness of cadmium (Cd) remediation by adjusting Cd availability via metal solubilization. Furthermore, rhizobacterial inoculation affects plants' metal tolerance and uptake by controlling the expression of several metal transporters, channels, and metal chelator genes. A meta-analysis was conducted to quantitatively assess the effects of rhizobacteria on Cd accumulation in plants using 207 individual observations from 47 articles.
View Article and Find Full Text PDFThe symbiosis of the highly metal-resistant CCNWSX0020 and has been considered an efficient tool for bioremediation of heavy metal-polluted soils. However, the metal resistance mechanisms of CCNWSX00200 have not been elucidated in detail. Here we employed a comparative transcriptome approach to analyze the defense mechanisms of CCNWSX00200 against Cu or Zn exposure.
View Article and Find Full Text PDFRandom mutagenesis in a symbiotic nitrogen-fixing Bradyrhizobium liaoningense CCNWSX0360 (Bln0360) using Tn5 identified five copper (Cu) resistance-related genes. They were functionally sorted into three groups: transmembrane transport (cueA and tolC); oxidation (copA); and protection of the membrane barrier (lptE and ctpA). The gene cueA, together with the upstream csoR (Cu-sensitive operon repressor), constituted a csoR-cueA divergon which plays a crucial role in Cu homeostasis.
View Article and Find Full Text PDFThe Sinorhizobium meliloti (S. meliloti) strain CCNWSX0020 displayed tolerance to high levels exposures of multiple metals and growth promotion of legume plants grown in metal-contaminated soil. However, the mechanism of metal-resistant strain remains unknown.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
September 2013
The main aim of this work was to study molecular characterization of a DNA fragment conferring resistance to Cu(II) in Sinorhizobium meliloti CCNWSX0020. The strain CCNWSX0020, resistant to 1.4 mmol l(-1) Cu(II) in tryptone-yeast extract medium was isolated from Medicago lupulina growing in mine tailings of Fengxian County, China.
View Article and Find Full Text PDF