Monolayers of transition metal dichalcogenides (TMDC) have recently emerged as excellent platforms for exploiting new physics and applications relying on electronic valley degrees of freedom in two-dimensional (2D) systems. Here, we demonstrate that Coulomb screening by 2D carriers plays a critical role in excitonic valley pseudospin relaxation processes in naturally carrier-doped WSe monolayers (1L-WSe). The exciton valley relaxation times were examined using polarization- and time-resolved photoluminescence spectroscopy at temperatures ranging from 10 to 160 K.
View Article and Find Full Text PDFTwo-dimensional crystals of semiconducting transition metal dichalcogenides absorb a large fraction of incident photons in the visible frequencies despite being atomically thin. It has been suggested that the strong absorption is due to the parallel band or 'band nesting' effect and corresponding divergence in the joint density of states. Here, we use photoluminescence excitation spectroscopy to show that the band nesting in mono- and bilayer MX2 (M=Mo, W and X=S, Se) results in excitation-dependent characteristic relaxation pathways of the photoexcited carriers.
View Article and Find Full Text PDFRecent success in the growth of monolayer MoS2 via chemical vapor deposition (CVD) has opened up prospects for the implementation of these materials into thin film electronic and optoelectronic devices. Here, we investigate the electronic transport properties of individual crystallites of high quality CVD-grown monolayer MoS2. The devices show low temperature mobilities up to 500 cm(2) V(-1) s(-1) and a clear signature of metallic conduction at high doping densities.
View Article and Find Full Text PDFIt has been well-established that single layer MX2 (M = Mo, W and X = S, Se) are direct gap semiconductors with band edges coinciding at the K point in contrast to their indirect gap multilayer counterparts. In few-layer MX2, there are two valleys along the Γ-K line with similar energy. There is little understanding on which of the two valleys forms the conduction band minimum (CBM) in this thickness regime.
View Article and Find Full Text PDFThickness is one of the fundamental parameters that define the electronic, optical, and thermal properties of two-dimensional (2D) crystals. Phonons in molybdenum disulfide (MoS2) were recently found to exhibit unique thickness dependence due to the interplay between short and long range interactions. Here we report Raman spectra of atomically thin sheets of WS2 and WSe2, isoelectronic compounds of MoS2, in the mono- to few-layer thickness regime.
View Article and Find Full Text PDFGeometrical confinement effect in exfoliated sheets of layered materials leads to significant evolution of energy dispersion in mono- to few-layer thickness regime. Molybdenum disulfide (MoS(2)) was recently found to exhibit indirect-to-direct gap transition when the thickness is reduced to a single monolayer. Emerging photoluminescence (PL) from monolayer MoS(2) opens up opportunities for a range of novel optoelectronic applications of the material.
View Article and Find Full Text PDF