Front Immunol
November 2023
Iron plays a crucial role in the biochemistry and development of nearly all living organisms. Iron starvation of pathogens during infection is a striking feature utilized by a host to quell infection. In mammals and some other animals, iron is essentially obtained from diet and recycled from erythrocytes.
View Article and Find Full Text PDFCell Death Discov
August 2023
Alzheimer's disease (AD) is a chronic neurodegenerative disease that seriously endangers the physical and mental health of patients, however, there are still no effective drugs or methods to cure this disease up to now. Protein glycosylation is the most common modifications of the translated proteins in eukaryotic cells. Recently many researches disclosed that aberrant glycosylation happens in some important AD-related proteins, such as APP, Tau, Reelin and CRMP-2, etc, suggesting a close link between abnormal protein glycosylation and AD.
View Article and Find Full Text PDFInsects and microbial pathogens are ubiquitous and play significant roles in various biological processes, while microbial pathogens are microscopic organisms that can cause diseases in multiple hosts. Insects and microbial pathogens engage in diverse interactions, leveraging each other's presence. Metals are crucial in shaping these interactions between insects and microbial pathogens.
View Article and Find Full Text PDFIron is an essential trace metal for almost all organisms, including human; however, oxidative stress can easily be caused when iron is in excess, producing toxicity to the human body due to its capability to be both an electron donor and an electron acceptor. Although there is a strict regulation mechanism for iron homeostasis in the human body and brain, it is usually inevitably disturbed by genetic and environmental factors, or disordered with aging, which leads to iron metabolism diseases, including many neurodegenerative diseases such as Alzheimer's disease (AD). AD is one of the most common degenerative diseases of the central nervous system (CNS) threatening human health.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) have identified over 60 genetic loci associated with immunoglobulin G (IgG) N-glycosylation; however, the causal genes and their abundance in relevant tissues are uncertain. Leveraging data from GWAS summary statistics for 8,090 Europeans, and large-scale expression quantitative trait loci (eQTL) data from the genotype-tissue expression of 53 types of tissues (GTEx v7), we derived a linkage disequilibrium score for the specific expression of genes (LDSC-SEG) and conducted a transcriptome-wide association study (TWAS). We identified 55 gene associations whose predicted levels of expression were significantly associated with IgG N-glycosylation in 14 tissues.
View Article and Find Full Text PDFProtein O-glucosylation is a crucial form of O-glycosylation, which involves glucose (Glc) addition to a serine residue within a consensus sequence of epidermal growth factor epidermal growth factor (EGF)-like repeats found in several proteins, including Notch. Glc provides stability to EGF-like repeats, is required for S2 cleavage of Notch, and serves to regulate the trafficking of Notch, crumbs2, and Eyes shut proteins to the cell surface. Genetic and biochemical studies have shown a link between aberrant protein O-glucosylation and human diseases.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
December 2020
Alzheimer's disease (AD) and Parkinson's disease (PD) are common neurodegenerative diseases in human. The pathogenesis of AD and PD is complex, and the current drugs and surgical treatments have not successfully alleviated or terminated the progression of the diseases. The lentiviral vector (LV) is a retroviral vector.
View Article and Find Full Text PDFAlzheimer's disease (AD) is an irreversible, age-related progressive neurological disorder, and the most common type of dementia in aged people. Neuropathological lesions of AD are neurofibrillary tangles (NFTs), and senile plaques comprise the accumulated amyloid-beta (Aβ), loaded with metal ions including Cu, Fe, or Zn. Some reports have identified metal dyshomeostasis as a neurotoxic factor of AD, among which Cu ions seem to be a central cationic metal in the formation of plaque and soluble oligomers, and have an essential role in the AD pathology.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most devastating neurodegenerative disorder. Due to the increase in population and longevity, incidence will triple by the middle of the twenty-first century. So far, no treatment has prevented or reversed the disease.
View Article and Find Full Text PDFOrganic selenium (Se), specifically Se-methylselenocysteine (MeSeCys), has demonstrated potential effects in human disease prevention including cancer and the emerging ameliorating effect on Alzheimer's disease. In plants, selenocysteine methyltransferase (SMT) is the key enzyme responsible for MeSeCys formation. In this study, we first isolated a novel SMT gene, designated as BjSMT, from the genome of a known Se accumulator, Brassica juncea L.
View Article and Find Full Text PDFHeroin and drug dependence are major contributors to global health burden worldwide, but their underlying mechanisms remain elusive and may vary from population to population. Reward- and memory-related candidate genes dopamine D2 receptor (DRD2) and brain-derived neurotrophic factor (BDNF), as well as the opioid receptor genes (OPRM1, OPRD1, and OPRK1), have been implicated in drug dependence, but relatively little is known on their contributions to heroin dependence in populations worldwide. Hence, we evaluated the contributions of the above five candidate genes in heroin dependence and several important related endophenotypes (the onset age of heroin use and subjective response to first heroin use), at single single-nucleotide polymorphism as well as haplotype levels, in a Han Chinese population sample.
View Article and Find Full Text PDFColon cancer patients have major unmet needs in terms of robust diagnostics and molecular biomarkers for personalized therapeutics. We have previously reported that human CAP10-like protein 46 kDa (hCLP46) is overexpressed in human acute myelogenous leukemia, T acute lymphoblastic leukemia, and leukemia cell lines. We extend this line of biomarker and diagnostic discovery research by investigating hCLP46 expression in colorectal cancer (CRC) tissues and examine the possibility of hCLP46 as a candidate biomarker for diagnosis and prognosis of CRC.
View Article and Find Full Text PDFCarboxylesterases are mainly involved in the mediation of metabolic resistance of many insects to organophosphate (OP) insecticides. Carboxylesterases underwent two divergent evolutionary events: (1) quantitative mechanism characterized by the overproduction of carboxylesterase protein; and (2) qualitative mechanism caused by changes in enzymatic properties because of mutation from glycine/alanine to aspartate at the 151 site (G/A151D) or from tryptophan to leucine at the 271 site (W271L), following the numbering of Drosophila melanogaster AChE. Qualitative mechanism has been observed in few species.
View Article and Find Full Text PDFMembers of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues.
View Article and Find Full Text PDFTau hyperphosphorylation is thought to underlie tauopathy. Working in a Drosophila tauopathy model expressing a human Tau mutant (hTauR406W, or Tau(∗)), we show that zinc contributes to the development of Tau toxicity through two independent actions: by increasing Tau phosphorylation and, more significantly, by directly binding to Tau. Elimination of zinc binding through amino acid substitution of Cys residues has a minimal effect on phosphorylation levels yet essentially eliminates Tau toxicity.
View Article and Find Full Text PDFDisruption of copper homeostasis has been implicated in Alzheimer's disease (AD) during the last 2 decades; however, whether copper is a friend or a foe is controversial. Within a genetically tractable Drosophila AD model, we manipulated the expression of human high-affinity copper importer orthologous in Drosophila to explore the in vivo roles of copper ions in the development of AD. We found that inhibition of Ctr1C expression by RNAi in Aβ-expressing flies significantly reduced copper accumulation in the brains of the flies as well as ameliorating neurodegeneration, enhancing climbing ability, and prolonging lifespan.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2012
Multicopper ferroxidases catalyze the oxidation of ferrous iron to ferric iron. In yeast and algae, they participate in cellular uptake of iron; in mammals, they facilitate cellular efflux. The mechanisms of iron metabolism in insects are still poorly understood, and insect multicopper ferroxidases have not been identified.
View Article and Find Full Text PDFThe aggregation or oligomerization of amyloid-β (Aβ) peptide is thought to be the primary causative event in the pathogenesis of Alzheimer's disease (AD). Considerable in vitro evidence indicates that the aggregation/oligomerization of Aβ is promoted in the presence of Zn; however, the functional role of Zn in AD pathogenesis is still not well clarified in vivo. Zn is imported into the brain mainly through the solute-linked carrier (Slc) 39 family transporters.
View Article and Find Full Text PDFThe multicopper oxidase (MCO) family of enzymes includes laccases, which oxidize a broad range of substrates including polyphenols and phenylendiamines; ferroxidases, which oxidize ferrous iron; and several other oxidases with specific substrates such as ascorbate, bilirubin or copper. The genome of Anopheles gambiae, a species of mosquito, encodes five putative multicopper oxidases. Of these five, only AgMCO2 has known enzymatic and physiological functions: it is a highly conserved laccase that functions in cuticle pigmentation and tanning by oxidizing dopamine and dopamine derivatives.
View Article and Find Full Text PDFBrassica juncea is promising for metal phytoremediation, but little is known about the functional role of most metal transporters in this plant. The functional characterization of two B. juncea cation-efflux family proteins BjCET3 and BjCET4 is reported here.
View Article and Find Full Text PDFBrassica juncea L. is a Zn/Cd accumulator. To determine the physiological basis of its metal accumulation phenotype, the functional properties and role of the metal efflux transporter BjCET2 were investigated using transgenic technology.
View Article and Find Full Text PDFIn this paper, the fluorescent mRNA differential display (DD) technique was applied to analyze transcriptional regulation in response to Cd treatment in a heavy-metal accumulator, Brassica juncea. 154 DD bands were identified, of which fragments corresponding to 15 and 13 cDNAs were successfully cloned from leaves and roots, respectively. Many of the genes were confirmed to have a 2-5 fold increase in expression in both roots and leaves after 48 h Cd exposure (approximately 22.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
March 2004
Using plants to remove or inactivate heavy metal pollutants from soils and surface waters provide a cheap and sustainable approach of Phytoremediation. However, field trials suggested that the efficiency of contaminant removal using natural hyperaccumulators is insufficient, due to that many of these species are slow growing and produce little shoot biomass. These factors severely constrain their potential for large-scale decontamination of polluted soils.
View Article and Find Full Text PDF