Axis inhibition protein 1 (AXIN1) is characterized as a tumor suppressor in numerous types of cancer. However, the functional role of AXIN1 in the testicular germ cell tumors (TGCTs) remains unclear. The human embryonal carcinoma-derived cell line NTera2 was transfected with a recombinant AXIN1 expression vector (pcDNA3.
View Article and Find Full Text PDFAn open-loop adaptive optics (AO) system for retinal imaging was constructed using a liquid crystal spatial light modulator (LC-SLM) as the wavefront compensator. Due to the dispersion of the LC-SLM, there was only one illumination source for both aberration detection and retinal imaging in this system. To increase the field of view (FOV) for retinal imaging, a modified mechanical shutter was integrated into the illumination channel to control the size of the illumination spot on the fundus.
View Article and Find Full Text PDFUsing the liquid crystal spatial light modulator (LC-SLM) as the wavefront corrector, an open-loop adaptive optics (AO) system for fundus imaging in vivo is constructed. Compared with the LC-SLM closed-loop AO system, the light energy efficiency is increased by a factor of 2, which is helpful for the safety of fundus illumination in vivo. In our experiment, the subjective accommodation method is used to precorrect the defocus aberration, and three subjects with different myopia 0, -3, and -5 D are tested.
View Article and Find Full Text PDFA new spot centroid detection algorithm for a Shack-Hartmann wavefront sensor (SHWFS) is experimentally investigated. The algorithm is a kind of dynamic tracking algorithm that tracks and calculates the corresponding spot centroid of the current spot map based on the spot centroid of the previous spot map, according to the strong correlation of the wavefront slope and the centroid of the corresponding spot between temporally adjacent SHWFS measurements. That is, for adjacent measurements, the spot centroid movement will usually fall within some range.
View Article and Find Full Text PDFUsed as a wavefront corrector, a liquid crystal spatial modulator (LC-SLM) has good repeatability and linearity, which are essential for open-loop adaptive optics, and the open-loop optical system can increase the light energy efficiency by a factor of two for the LC-SLM and improve the system bandwidth. In order to test the performance of the LC-SLM in open-loop correction, an indoor closed-loop configuration optical system is constructed on the open-loop control method. With this method, it is demonstrated that the residual error after open-loop correction could be smaller than 0.
View Article and Find Full Text PDF