Publications by authors named "Mingliang Ge"

Nanomaterials with intrinsic enzyme-like activity have gained substantial scientific attention as viable substitutes to natural biological enzymes owing to their cheap price and great stability. Numerous artificial enzyme mimics have been employed effectively in sectors such as sensing, environmental processing, and cancer treatment. In this study, novel nitrogen-doped porous carbon nanomaterials (CPs) were produced by modifying polypyrrole with magadiite using chemical oxidative polymerization and calcination methods.

View Article and Find Full Text PDF

Meta-aramid fibrids (MAF) have attracted much attention. However, it is difficult for this high mechanical performance fiber to form sufficient interface adhesion between the MAF and polyurethane (PU) matrix due to the chemical inertness of its surface. Thus, the surface activity of MAF should be improved to obtain a high-performance MAF/PU composite.

View Article and Find Full Text PDF

Pollutant detection is of great importance for quality control of drinking water and environmental protection. The common methods of pollutant detection suffer from time-consuming procedures, bulky and expensive instruments, and complicated sample pretreatment. Herein, a type of conceptually new self-amplified fluorescent nanoparticle (SAFN) is constructed based on aggregation-induced emission (AIE) luminogens for rapid and visual detection of xylene in aqueous media.

View Article and Find Full Text PDF
Article Synopsis
  • Magadiite (MAG) was utilized as a functional filler in sodium carboxy-methylcellulose (CMC) to create a nacre-like nanocomposite film through solvent evaporation, resulting in an interpenetrating petals structure.
  • Characterization techniques like SEM and XRD showed that CMC macromolecules increased MAG's layer spacing and enhanced the thermal stability of the composite.
  • The CMC/MAG composite exhibited improved tensile strength, reaching a maximum of 1.71 MPa at a 20% MAG content, along with excellent flame resistance, thermal stability, and biocompatibility, making it suitable for applications in material and tissue engineering.
View Article and Find Full Text PDF

The magadiite⁻magnetite (MAG⁻Fe₃O₄) nanocomposite has great potential applications in the field of biomaterials research. It has been used as a novel magnetic sorbent, prepared by co-precipitation method. It has the dual advantage of having the magnetism of Fe₃O₄ and the high adsorption capacity of pure magadiite (MAG).

View Article and Find Full Text PDF

A kind of self-stabilized micelles of fluorescent block copolymers are constructed for rapid and sensitive detection of aliphatic amines in water based on capture-report strategy. An amphiphilic triblock copolymer functionalized with aggregation induced emission (AIE) chromophores self assembles into micelles with core-shell structures in aqueous solution. Hydrophobic AIE chromophores organize into cores, where hydrophobic interaction among the AIE chromophores inhibits the micelles from disassembling.

View Article and Find Full Text PDF

The magadiite (MAG) was modified by cetyltrimethyl ammonium-Bromide (CTAB) and then further modified by Chitosan (CS) which is called organic modified-magadiite as magadiite-cetyltrimethyl ammonium bromide (MAG-CTAB) and magadiite-cetyltrimethyl ammonium bromide-Chitosan (MAG-CTAB-CS), respectively, in this research study. The MAG, MAG-CTAB, and MAG-CTAB-CS were used as 5-Fluorouracil (5-FU) drug carrier materials; the drug carrier's materials were marked as magadiite-5-Fluorouracil (MAG/5-FU), magadiite-cetyltrimethyl ammonium bromide-5-Fluorouracil (MAG-CTAB/5-FU), and magadiite-cetyltrimethyl ammonium bromide-Chitosan (MAG-CTAB-CS/5-FU). X-ray diffraction(XRD, Flourier transform infrared spectrometry (FTIR) and scanning electron microscopy (SEM) results were shown that 5-Fluorouracil was combined with carrier materials through physical apparent adsorption, ion exchange, chemical bond, hydrogen bond, and electrostatic interaction.

View Article and Find Full Text PDF

Rigid biological systems are increasingly becoming a source of inspiration for the fabrication of the advanced functional materials due to their diverse hierarchical structures and remarkable engineering properties. As a bionic biomaterial with a clear layered structure, excellent mechanical properties, and interesting rainbow colors, nacre has become one of the most attractive models for novel artificial materials design. In this research paper, the tough and strong nacre-like bio-hybrid membranes with an interpenetrating petals structure were fabricated from chitosan (CS) and magadiite (MAG) clay nanosheets through the gel-casting self-assembling method.

View Article and Find Full Text PDF

Organically-modified magadiite (MAG⁻CTAB⁻KH550) was synthesized via ion-exchange method and condensation reaction in the presence of pure magadiite (MAG), cetyltrimethylammonium bromide (CTAB) and γ-aminopropyltriethoxysilane (KH550) in aqueous solution in this research. This new adsorbent material was studied using scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and N₂ adsorption/desorption isotherms process. It was found that the MAG⁻CTAB⁻KH550 has high Brunaur-Emmet-Teller (BET) specific surface area and mesoporous pore size distribution which enhanced its ability to remove phenol in aqueous solution; and, the value of pH has a relatively large impact on the adsorption behavior of the sorbent.

View Article and Find Full Text PDF