Publications by authors named "Mingle Wang"

Zinc (Zn) and nitrogen (N) are the two crucial nutrients for tea plant growth and development and contribute to the quality formation of tea fresh leaves. In this study, a zinc/iron-regulated transporter-like protein 4 gene (i.e.

View Article and Find Full Text PDF

Tea tree is a fluorine (F)-enriched plant, leading to much concern about the safety of drinking tea from tea tree (Camellia sinensis (L.) Kuntze). Tea tree is a perennial leaf-harvested crop, and tea production in China is generally categorized as spring tea, summer tea and autumn tea in its annual growth rounds.

View Article and Find Full Text PDF

Magnesium (Mg) is a crucial nutrient for the growth and development of and is closely related to the quality of tea. However, the underlying mechanisms responding to low-Mg stress in tea plants remain largely unknown. In this study, photosynthetic parameters, metabolomics, and transcriptomics were utilized to explore the potential effects of low Mg on the growth and metabolism of .

View Article and Find Full Text PDF

MiR156 play important roles in regulation of plant growth and development, secondary metabolite synthesis, and other biological processes by targeting the SQUAMOSA promoter binding protein-like (SPL) family. Our previous sequencing data analysis suggested that Csn-miR156d may regulate flowering and anthocyanin accumulation by cleavage and degradation of the expression of the SPL in tea plant, but it remains to be elucidated. In this study, 5'RLM-RACE experiment, tobacco transient transformation, qRT-PCR, and antisense oligonucleotide (asODN) were used to verify that CsSPL1 is the target gene of Csn-miR156d.

View Article and Find Full Text PDF

Plants have evolved a series of zinc (Zn) homeostasis mechanisms to cope with the fluctuating Zn in the environment. How Zn is taken up, translocated and tolerate by tea plant remains unknown. In this study, on the basis of RNA-Sequencing, we isolated a plasma membrane-localized Metal Tolerance Protein (MTP) family member CsMTP4 from Zn-deficient tea plant roots and investigated its role in regulation of Zn homeostasis in tea plant.

View Article and Find Full Text PDF

Nitrogen (N) is a major nutrition element for tea plant. However, application of high levels of N negatively causes environmental problems. Therefore, improved N use efficiency (NUE) of tea plant will be highly desirable and crucial for sustainable tea cultivation.

View Article and Find Full Text PDF

Nitrogen (N) is an important contributor in regulating plant growth and development as well as secondary metabolites synthesis, so as to promote the formation of tea quality and flavor. Theanine, polyphenols, and caffeine are important secondary metabolites in tea plant. In this study, the responses of roots to N deprivation and resupply were investigated by metabolome and RNA-seq analysis.

View Article and Find Full Text PDF

For tea plants, nitrogen (N) is a foundational element and large quantities of N are required during periods of roundly vigorous growth. However, the fluctuation of N in the tea garden could not always meet the dynamic demand of the tea plants. Autophagy, an intracellular degradation process for materials recycling in eukaryotes, plays an important role in nutrient remobilization upon stressful conditions and leaf senescence.

View Article and Find Full Text PDF

Magnesium (Mg) plays important roles in photosynthesis, sucrose partitioning, and biomass allocation in plants. However, the specific mechanisms of tea plant response to Mg deficiency remain unclear. In this study, we investigated the effects of Mg deficiency on the quality constituents of tea leaves.

View Article and Find Full Text PDF

Histone methylation plays an important regulatory role in the drought response of many plants, but its regulatory mechanism in the drought response of the tea plant remains poorly understood. Here, drought stress was shown to induce lower relative water content and significantly downregulate the methylations of histone H3K4 in the tea plant. Based on our previous analysis of the SET Domain Group () gene family, the full-length coding sequence (CDS) of was cloned from the tea cultivar ''.

View Article and Find Full Text PDF

This study investigated the regulatory relationship between important flavor compounds and microRNA (miRNA) in nine different tissues of tea plant by analyzing the related metabolites, small RNAs (sRNAs), degradome, and coexpression network. A total of 272 differential expressed miRNAs (DEmiRNAs) were obtained, including 198 conserved miRNAs and 74 novel miRNAs. Meanwhile, the expression patterns of miR159-, miR167-, and miR396- pairs were investigated by quantitative real-time polymerase chain reaction (qRT-PCR) and the target sites were verified by 5'RNA ligase-mediated RACE (5' RLM-RACE).

View Article and Find Full Text PDF
Article Synopsis
  • Nitrogen is crucial for plant growth, particularly in tea plants, and can trigger autophagy during stress, which has not been fully explored in these plants.
  • A study identified 80 autophagy-related genes in the tea plant genome, with significant expression increases as the plant develops.
  • Overexpression of specific genes led to changes like earlier flowering and altered nutrient levels, suggesting their potential for improving nutrient use in plants.
View Article and Find Full Text PDF

The vigor of tea plants () and tea quality are strongly influenced by the abundance and forms of nitrogen, principally NO, NH, and amino acids. Mechanisms to access different nitrogen sources and the regulatory cues remain largely elusive in tea plants. A transcriptome analysis was performed to categorize differentially expressed genes (DEGs) in roots and young leaves during the early response to four nitrogen treatments.

View Article and Find Full Text PDF

Cation diffusion facilitators (CDFs) play central roles in metal homeostasis and tolerance in plants, but the specific functions of Camellia sinensis CDF-encoding genes and the underlying mechanisms remain unknown. Previously, transcriptome sequencing results in our lab indicated that the expression of CsMTP8.2 in tea plant shoots was down-regulated exposed to excessive amount of Mn conditions.

View Article and Find Full Text PDF

Background: Heat stress factors (Hsfs) play vital roles in signal transduction pathways operating in responses to environmental stresses. However, Hsf gene family has not been thoroughly explored in tea plant (Camellia sinensis L.).

View Article and Find Full Text PDF

Volatile components in fresh leaves are involved in the regulation of many stress responses, such as insect damage, fungal infection and high temperature. However, the potential function of volatile components in hyperosmotic response is largely unknown. Here, we found that 7-day hyperosmotic treatment specifically led to the accumulation of (Z)-3-hexen-1-ol, (E)-2-hexenal and methyl salicylate.

View Article and Find Full Text PDF

The molecular mechanisms regulating calcium-mediated thermotolerance in Camellia sinensis were revealed by RNA-Sequencing. Heat stress is one of the most remarkable abiotic factors limiting the growth and productivity of Camellia sinensis plants. Calcium helps regulate plant responses to various adverse environmental conditions, including heat stress.

View Article and Find Full Text PDF

Tea plants [Camellia sinensis (L.) O. Kuntze] are an important leaf-type crop that are widely used for the production of non-alcoholic beverages in the world.

View Article and Find Full Text PDF

Small heat shock proteins (sHSPs) play important roles in responses to heat stress. However, the functions of sHSPs in tea plants (Camellia sinensis) remain uncharacterized. A novel sHSP gene, designated CsHSP17.

View Article and Find Full Text PDF

Flavonoids are the main flavor components and functional ingredients in tea, and the shikimic acid pathway is considered as one of the most important pathways in flavonoid biosynthesis, but little was known about the function of regulatory genes in the metabolism phenolic compounds in tea plant (Camellia sinensis), especially related genes in shikimic acid pathway. The dynamic changes of catechin (predominant flavonoid) contents were analyzed in this study, and four genes (CsPPT, CsDAHPS, CsSDH and CsCS) involving in shikimic acid pathway in C. sinensis albino cultivar 'Baicha 1' were cloned and characterized.

View Article and Find Full Text PDF

The tea plant [Camellia sinensis (L.) O. Kuntze] is an important commercial crop rich in bioactive ingredients, especially catechins, caffeine, theanine and other free amino acids, which the quality of tea leaves depends on.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) are approximately 19 ~ 21 nucleotide noncoding RNAs produced by Dicer-catalyzed excision from stem-loop precursors. Many plant miRNAs have critical functions in development, nutrient homeostasis, abiotic stress responses, and pathogen responses via interaction with specific target mRNAs. Camellia sinensis is one of the most important commercial beverage crops in the world.

View Article and Find Full Text PDF

Permeation characteristics of an azobenzene-containing liquid crystalline (LC) non-porous film are investigated using a metallic corrosion method. Thin films (300 nm) are fabricated by the solution casting of an azobenzene side-chain LC polymer on freshly polished carbon steel coupons. Coated coupons are treated under the following conditions: a) gradual annealing at a cooling rate lower than 1 °C · min(-1) from 150 °C (above its Tg ) to room temperature, and b) irradiation at 465 nm (20 mW · cm(-2) ) with either circularly polarized light (CPL) or non-polarized light (NPL).

View Article and Find Full Text PDF