Publications by authors named "Minglan Jin"

Idiopathic pulmonary fibrosis (PF) is a type of chronic lung disease. Here, we investigated the effect of induced pluripotent stem cell (iPSC)-derived exosomes (iPSC-exosomes) on M2-type macrophages which play a critical role in pulmonary fibrosis. Exosomes were purified from the conditioned medium of iPSCs.

View Article and Find Full Text PDF

Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated.

View Article and Find Full Text PDF

DNA-based vaccination is an attractive alternative for overcoming the disadvantages of inactivated virus vaccines; however, DNA vaccines alone often generate only weak immune responses. In this study, the efficacy of LMS as a chemical adjuvant on a DNA vaccine (pVIR-P12A-IL18-3C) encoding the P1-2A and 3C genes of the FMDV and swine IL-18, which provides protection against FMDV challenge, was tested. All test pigs were administered booster vaccinations 28 days after the initial inoculation, and were challenged with 1000 ID50 FMDV O/NY00 20 days after the booster vaccination.

View Article and Find Full Text PDF

Two recombinant fowlpox viruses (rFPV-P1 and rFPV-IL18-2AP12A) containing foot-and-mouth disease virus (FMDV) capsid polypeptide, 3C coding regions of O/NY00 were evaluated to determine their abilities to induce humoral and cellular responses in the presence or absence of swine IL-18 as genetic adjuvant. The ability to protect swine against homologous virus challenge was examined. All swine were given booster vaccinations at 21 days after the initial inoculation and were challenged 10 days after the booster vaccination.

View Article and Find Full Text PDF

In this paper, two recombinant plasmids (pVIR-P12AIL18-3C and pVIR-P12A-3C) containing foot and mouth disease virus (FMDV) capsid polypeptide, 3C coding regions of O/NY00 and using/or not swine IL18 as a genetic adjuvant were constructed, and evaluated for their ability to induce humoral and cellular responses in mice and swine. In addition, the ability to protect swine against homologous virus challenge was examined. Mice and swine were given booster vaccination twice and once, respectively, and swine were challenged 10 days after the booster vaccination.

View Article and Find Full Text PDF

Two recombinant fowlpox viruses (rFPV-ORF5-ORF3 and rFPV-IL-18-ORF5-ORF3) containing the ORF5/ORF3 cDNAs of PRRSV (strain Chang Chun) and IL-18 of swine were constructed and evaluated for theirs abilities to induce humoral and cellular responses in piglets. In addition, their abilities to protect piglets against homologous virus challenge were examined. All piglets were given booster vaccinations at 21 days after the initial inoculation, and all piglets were challenged at 60 after the initial inoculation.

View Article and Find Full Text PDF

Foot-and-mouth disease virus (FMDV) is an important pathogen with worldwide economic consequences. Consequently, an important goal is the development of a vaccine that can provide rapid protection while overcoming the potential risk associated with the production of conventional inactivated vaccines. An important secondary feature of the vaccine would be the ability to distinguish vaccinated from infected animals.

View Article and Find Full Text PDF