Publications by authors named "Mingke Yan"

Cadmium (Cd) is a highly toxic and carcinogenic pollutant that poses significant risks to living organisms and the environment, as it is absorbed by the plant roots and accumulates in different parts of crop during its production. A promising sustainable strategy to counteract these threats to use calcium oxide nanoparticles (CaO-NPs) as soil supplements in fodder crops. This approach has shown notable morpho-physiological and biochemical improvements under metal toxicity conditions.

View Article and Find Full Text PDF

Cadmium (Cd) toxicity poses a significant threat to soil health and sustainable food production. Its bioaccumulation in plant tissues induces phytotoxicity by affecting physiological and biochemical attributes, leading to a reduction in plant biomass and production. Recently, nanotechnology has emerged as a promising approach for addressing heavy metal toxicity in an eco-friendly manner to enhance crop production.

View Article and Find Full Text PDF

The perennial legume alfalfa ( L.) is of high value in providing cheap and high-nutritive forages. Due to a lack of tillage during the production period, the soil in which alfalfa grows prunes to become compacted through highly mechanized agriculture.

View Article and Find Full Text PDF

Although the widespread use of nanoparticles has been reported in various fields, the toxic mechanisms of molecular regulation involved in the alfalfa treated by nanomaterials is still in the preliminary research stage. In this study, Bara 310 SC (Bara, tolerant genotype) and Gold Empress (Gold, susceptible genotype) were used to investigate how the leaves of alfalfa interpret the physiological responses to graphene stress based on metabolome and transcriptome characterizations. Herein, graphene at different concentrations (0, 1% and 2%, w/w) were selected as the analytes.

View Article and Find Full Text PDF

Beyond the role of a nutrient reservoir during germination, the endosperm of wheat seeds also responds to different abiotic stresses via modification of the protein profiles. The endosperm is the main component of wheat seeds. During seed germination, it provides nutrients to support the embryo development, and its constituents vary under environmental stresses such as drought, salinity and submergence that are associated with disordered water supply.

View Article and Find Full Text PDF

Wheat (Triticum aestivum L.) is one of the major crops worldwide and its production is inevitably subjected to various biotic/abiotic stresses during the life cycle. Drought, salinity and flooding are among the most severe abiotic stresses restricting wheat yields and could occur at very early stages such as seed germination.

View Article and Find Full Text PDF