The selective breeding of beef cattle plays an important role in meeting the growing demand for beef and improving production performance. This study used fattened cattle of the Simmental (S) breed, and two crossbreeds: Simmental × Mongolian (SM) and Simmental × Holstein (SH), which were healthy, of similar age and weight. The results showed that the blood glucose (GLU) levels of the crossbred, genetically improved SM and SH groups were higher than that of the S group.
View Article and Find Full Text PDFSpecies with different genetic backgrounds exhibit distinct metabolic traits. Nine beef cattle were selected for the experiment to study changes in serum metabolic phenotypes, rumen microbiota diversity, and composition in beef cattle from different genetic backgrounds. Three groups were Chinese Simmental (S group), Simmental×Chinese Holstein (SH group), and Simmental × Mongolian (SM group) cattle.
View Article and Find Full Text PDFTo study shifts in the intestinal microbiota during estrus synchronization in ruminants, we characterized the intestinal microbiota in grazing Simmental cows and the possible mechanism that mediates this shift. Fourteen postpartum Simmental beef cows were synchronized beginning on day 0 (D0) with a controlled internal release device (CIDR), and cloprostenol was injected on D9 when the CIDR was withdrawn. Synchronization ended with timed artificial insemination on D12.
View Article and Find Full Text PDF