Publications by authors named "Mingkan Zhang"

Residential homes and light commercial buildings usually require substantial heat and electricity simultaneously. A combined heat and power system enables more efficient and environmentally friendly energy usage than that achieved when heat and electricity are produced in separate processes. However, due to financial and space constraints, residential and light commercial buildings often limit the use of traditional large-scale industrial equipment.

View Article and Find Full Text PDF

As an important part of urban green infrastructure, the landscape effect of the urban waterfront green space varies, and sometimes, the green space with an excellent landscape aesthetic value fails to serve the needs of most citizens. This seriously affects the construction of a green ecological civilization and the implementation of the concept of "common prosperity" in China. Based on multi-source data, this study took the Qiantang River Basin as an example, selected 12 representative waterfront green spaces along the river as the research objects, and used qualitative and quantitative analysis methods to determine the landscape aesthetic value of the research area from the different dimensions of space, psychology, and physiology.

View Article and Find Full Text PDF

Most COVID-19 vaccines require temperature control for transportation and storage. Two types of vaccine have been developed by manufacturers (Pfizer and Moderna). Both vaccines are based on mRNA and lipid nanoparticles requiring low temperature storage.

View Article and Find Full Text PDF

Grocery stores provide essential services to communities all over the world. The COVID-19 pandemic has necessitated better understanding of the transport and dynamics of aerosolized viruses, particularly for the assessment of infection transmission risk within grocery stores and for other providers of essential services. In this study, a 3D computational fluid dynamics model was developed for a medium-sized grocery store in the United States using Ansys Fluent software.

View Article and Find Full Text PDF

Most COVID-19 vaccines require ambient temperature control for transportation and storage. Both Pfizer and Moderna vaccines are based on mRNA and lipid nanoparticles requiring low temperature storage. The Pfizer vaccine requires ultra-low temperature storage (between -80 °C and -60 °C), while the Moderna vaccine requires -30 °C storage.

View Article and Find Full Text PDF

The dispersion of indoor airborne contaminants across different zones within a mechanically ventilated building is a complex phenomenon driven by multiple factors. In this study, we modeled the indoor dispersion of airborne SARS-CoV-2 aerosols within a US Department of Energy detailed medium office prototype building using CONTAM software. The aim of this study is to improve our understanding about how different parts of a building can experience varying concentrations of the airborne viruses under different circumstances of release and mitigation strategies.

View Article and Find Full Text PDF

A microfluidic chip with single-sided herringbone microstructure has been developed to isolate circulating tumor cells (CTCs) from blood samples of cancer patients. Here, we describe a new double-sided herringbone chip in which staggered herringbone micromixers are placed on both top and bottom surfaces of microchannels. The double-sided herringbone structure enables a high CTC capture efficiency of whole blood samples without depletion of red blood cells because of the effects of leukocyte margination and plasma skimming.

View Article and Find Full Text PDF

A numerical analysis was conducted to study a room temperature magnetocaloric refrigerator with a 16-layer parallel plates active magnetic regenerator (AMR). Sixteen layers of LaFeMnSiH having different Curie temperatures were employed as magnetocaloric material (MCM) in the regenerator. Measured properties data was used.

View Article and Find Full Text PDF

Inspired by nature, functionalized nanopores with biomimetic structures have attracted growing interests in using them as novel platforms for applications of regulating ion and nanoparticle transport. To improve these emerging applications, we study theoretically for the first time the ion transport and selectivity in short nanopores functionalized with pH tunable, zwitterionic polyelectrolyte (PE) brushes. In addition to background salt ions, the study takes into account the presence of H(+) and OH(-) ions along with the chemistry reactions between functional groups on PE chains and protons.

View Article and Find Full Text PDF

Fundamental understanding of ion transport phenomena in nanopores is crucial for designing the next-generation nanofluidic devices. Due to surface reactions of dissociable functional groups on the nanopore wall, the surface charge density highly depends upon the proton concentration on the nanopore wall, which in turn affects the electrokinetic transport of ions, fluid, and particles within the nanopore. Electrokinetic ion transport in a pH-regulated nanopore, taking into account both multiple ionic species and charge regulation on the nanopore wall, is theoretically investigated for the first time.

View Article and Find Full Text PDF

In the next-generation nanopore-based DNA sequencing technique, the DNA nanoparticles are electrophoretically driven through a nanopore by an external electric field, and the ionic current through the nanopore is simultaneously altered and recorded during the DNA translocation process. The change in the ionic current through the nanopore as the DNA molecule passes through the nanopore represents a direct reading of the DNA sequence. Due to the large mismatch of the cross-sectional areas of the nanopore and the microfluidic reservoirs, the electric field inside the nanopore is significantly higher than that in the fluid reservoirs.

View Article and Find Full Text PDF

A novel polyelectrolyte (PE)-modified nanopore, comprising a solid-state nanopore functionalized by a nonregulated PE brush layer connecting two large reservoirs, is proposed to regulate the electrokinetic translocation of a soft nanoparticle (NP), comprising a rigid core covered by a pH-regulated, zwitterionic, soft layer, through it. The type of NP considered mimics bionanoparticles such as proteins and biomolecules. We find that a significant enrichment of H(+) occurs near the inlet of a charged solid-state nanopore, appreciably reducing the charge density of the NP as it approaches there, thereby lowering the NP translocation velocity and making it harder to thread the nanopore.

View Article and Find Full Text PDF

Chemically functionalized nanopores in solid-state membranes have recently emerged as versatile tools for regulating ion transport and sensing single biomolecules. This study theoretically investigated the importance of the bulk salt concentration, the geometries of the nanopore, and both the thickness and the grafting density of the polyelectrolyte (PE) brushes on the electrokinetic ion and fluid transport in two types of PE brush functionalized nanopore: PE brushes are end-grafted to the entire membrane surface (system I), and to its inner surface only (nanopore wall) (system II). Due to a more significant ion concentration polarization (CP), the enhanced local electric field inside the nanopore, the conductance, and the electroosmotic flow (EOF) velocity in system II are remarkably smaller than those in system I.

View Article and Find Full Text PDF

Nanopores have emerged as promising next-generation devices for DNA sequencing technology. The two major challenges in such devices are: (i) find an efficient way to raise the DNA capture rate prior to funnelling a nanopore, and (ii) reduce the translocation velocity inside it so that single base resolution can be attained efficiently. To achieve these, a novel soft nanopore comprising a solid-state nanopore and a functionalized soft layer is proposed to regulate the DNA electrokinetic translocation.

View Article and Find Full Text PDF

Many biocolloids, biological cells and micro-organisms are soft particles, consisted with a rigid inner core covered by an ion-permeable porous membrane layer. The electrophoretic motion of a soft spherical nanoparticle in a nanopore filled with an electrolyte solution has been investigated using a continuum mathematical model. The model includes the Poisson-Nernst-Planck (PNP) equations for the ionic mass transport and the modified Stokes and Brinkman equations for the hydrodynamic fields outside and inside the porous membrane layer, respectively.

View Article and Find Full Text PDF

Electrokinetic particle translocation through a nanopore containing a floating electrode is investigated by solving a continuum model, composed of the coupled Poisson-Nernst-Planck (PNP) equations for the ionic mass transport and the modified Stokes equations for the flow field. Two effects due to the presence of the floating electrode, the induced-charge electroosmosis (ICEO) and the particle-floating electrode electrostatic interaction, could significantly affect the electrokinetic mobility of DNA nanoparticles. When the electrical double layers (EDLs) of the DNA nanoparticle and the floating electrode are not overlapped, the particle-floating electrode electrostatic interaction becomes negligible.

View Article and Find Full Text PDF