In this research, the core objective is to explore the effect of super-absorbent polymer material (poly(sodium acrylate)) on the heat storage performance of magnesium sulfate and to investigate the heat transfer behavior of 13X-zeolite, nano-aluminum oxide (nano-AlO) and poly(sodium acrylate) modified magnesium sulfate in a reactor. Finally it provides support for future material and reactor design. All characterizations and performance tests were done in the laboratory and a numerical simulation method was used to investigate the heat transfer behavior of the reactor.
View Article and Find Full Text PDFAuCu phase had a significant effect on the bonding strength of Au80Sn20 alloy and Cu substrate. The formation of the AuCu(200)/Cu(200) interface significantly improves the shear strength of solder joints. Therefore, it is particularly important to analyze the strengthening mechanism of the AuCu phase in the Cu matrix.
View Article and Find Full Text PDFTo design high specific surface area and optimize the pore size distribution of materials, we employ a combination of carbonization and KOH activation to prepare activated carbon derived from ground grain hulls. The resulting carbon material at lower temperature (800, BSAC-A-800) exhibits a porous structure with a high specific surface area of 1037.6 m g and a pore volume of 0.
View Article and Find Full Text PDFIn this study, the internal resistance with the increasing of electrode thickness in a typical nanoporous carbon-based supercapacitor and their corresponding electrochemical performances were designed and investigated in detail. As for the carbon-based double electrode layer electrochemical system, electrochemical experiments greatly support the fact of nonlinear dependence and indicate that the curve of internal resistance vs. electrode thickness can have a minimum value when the thickness increasing from 10 to 140 μm.
View Article and Find Full Text PDF