Recent advancements in polymer-assisted layer-by-layer (LbL) fabrication have revolutionized the development of wearable sensors for health monitoring. LbL self-assembly has emerged as a powerful and versatile technique for creating conformal, flexible, and multi-functional films on various substrates, making it particularly suitable for fabricating wearable sensors. The incorporation of polymers, both natural and synthetic, has played a crucial role in enhancing the performance, stability, and biocompatibility of these sensors.
View Article and Find Full Text PDFBisphenol A (BPA) is an industrial chemical used extensively in plastics and resins. However, its endocrine-disrupting properties pose risks to human health and the environment. Thus, accurate and rapid detection of BPA is crucial for exposure monitoring and risk mitigation.
View Article and Find Full Text PDFDeveloping a rapid, sensitive, and efficient analytical method for the trace-level determination of highly concerning antibiotic ciprofloxacin (CIP) is desirable to guarantee the safety of human health and ecosystems. In this work, a novel electrochemical aptasensor based on polyethyleneimine grafted reduced graphene oxide and titanium dioxide (rGO/PEI/TiO) nanocomposite was constructed for ultrasensitive and selective detection of CIP. Through the in-situ electrochemical oxidation of TiCT nanosheets, TiO nanosheets with good electrochemical response were prepared in a more convenient and eco-friendly method.
View Article and Find Full Text PDF