Evaluating the steady-state protein level of the EGFR in live cells presents significant challenges compared to measuring its kinase activity. Traditional testing methods, such as immunoblotting, ELISA, and immunofluorescence assays, are generally restricted to fixed cells or cell lysates. Despite their utility, these methods are cumbersome and provide only intermittent snapshots of EGFR levels at specific time points.
View Article and Find Full Text PDFUBE2F, a neddylation E2, neddylates CUL5 to activate cullin-RING ligase-5, upon coupling with neddylation E3 RBX2/SAG. Whether and how UBE2F controls pancreatic tumorigenesis is previously unknown. Here, we showed that UBE2F is essential for the growth of human pancreatic cancer cells with KRAS mutation.
View Article and Find Full Text PDFSurvival rates for non-small cell lung cancer (NSCLC) remain low despite the advent of novel therapeutics. Tyrosine kinase inhibitors (TKIs) targeting mutant epidermal growth factor receptor (EGFR) in NSCLC have significantly improved mortality but are plagued with challenges--they can only be used in the small fraction of patients who have susceptible driver mutations, and resistance inevitably develops. Aberrant glycosylation on the surface of cancer cells is an attractive therapeutic target as these abnormal glycosylation patterns are typically specific to cancer cells and are not present on healthy cells.
View Article and Find Full Text PDFSAG (sensitive to apoptosis gene)/RBX2 (RING box-2), is the second family member of RING component of cullin-RING ligase (CRL) complex required for its enzymatic activity. Using total or conditional Sag knockout mouse models, we previously showed that Sag plays an essential role in embryonic development, apoptosis, vasculogenesis, angiogenesis and tumorigenesis. We also found that Sag-null ES cells are more sensitive to radiation.
View Article and Find Full Text PDFSAG/RBX2 is an E3 ligase, whereas SHOC2 is a RAS-RAF positive regulator. In this study, we address how Sag-Shoc2 crosstalk regulates pancreatic tumorigenesis induced by Kras. Sag deletion increases the size of pancreas and causes the conversion of murine pancreatic intraepithelial neoplasms (mPanINs) to neoplastic cystic lesions with a mechanism involving Shoc2 accumulation, suggesting that Sag determines the pathological process via targeting Shoc2.
View Article and Find Full Text PDFSAG (Sensitive to Apoptosis Gene), also known as RBX2 or ROC2, is a RING component of CRL (Cullin-RING ligase), required for its activity. Our previous studies showed that Sag/Rbx2 co-operated with Kras or Pten loss to promote tumorigenesis in the lung and prostate, respectively, but antagonized Kras to inhibit skin tumorigenesis, suggesting a tissue/context dependent function of Sag. The role of SAG in KRAS-induced pancreatic tumorigenesis is unknown.
View Article and Find Full Text PDFAndrogen receptor (AR) and its constitutively active variants (AR-Vs) have been extensively implicated in the progression and recurrence of prostate cancer, making them attractive targets in the treatment of this disease. Whether and how neddylation modification regulates AR, and the therapeutic implications of this potential regulation, are relatively unexplored areas of investigation. Here we report that neddylation inactivation by the pharmacological inhibitor MLN4924 or Lenti-shRNA-based genetic knockdown of neddylation activating enzyme (NAE) selectively suppressed growth and survival of prostate cancer cells with minor, if any, effect on normal prostate epithelial cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2019
SOX2 is a key transcription factor that plays critical roles in maintaining stem cell property and conferring drug resistance. However, the underlying mechanisms by which SOX2 level is precisely regulated remain elusive. Here we report that MLN4924, also known as pevonedistat, a small-molecule inhibitor of neddylation currently in phase II clinical trials, down-regulates SOX2 expression via causing accumulation of MSX2, a known transcription repressor of SOX2 expression.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2019
FBXW7 acts as a typical tumor suppressor, with loss-of-function alterations in human cancers, by promoting ubiquitylation and degradation of many oncoproteins. Lysine-specific demethylase 1 (LSD1) is a well-characterized histone demethylase. Whether LSD1 has demethylase-independent activity remains elusive.
View Article and Find Full Text PDFSAG (Sensitive to Apoptosis Gene) and ROC1 (Regulator of Cullin-1) are two family members of the RING component of CRL (Cullin RING ligase). Both members are essential for growth and survival of several types of human cancer cells; their role in renal cell carcinoma (RCC), however, remains elusive. Here we reported that compared to adjacent normal tissues, both SAG and ROC1 are overexpressed in RCC, which is positively correlated with poor patient survival, particularly for SAG.
View Article and Find Full Text PDFFBXW2 inhibits proliferation of lung cancer cells by targeting SKP2 for degradation. Whether and how FBXW2 regulates tumor invasion and metastasis is previously unknown. Here, we report that FBXW2 is an E3 ligase for β-catenin.
View Article and Find Full Text PDFFBXW7 is a tumor suppressive E3 ligase, whereas RAS-ERK and mechanistic target of rapamycin kinase (mTORC1) are two major oncogenic pathways. Whether and how FBXW7 regulates these two oncogenic pathways are unknown. Here, we showed that SHOC2, a RAS activator, is a FBXW7 substrate.
View Article and Find Full Text PDFThe primary cilium is a microtubule-based sensory organelle. The molecular mechanism that regulates ciliary dynamics remains elusive. Here, we report an unexpected finding that MLN4924, a small molecule inhibitor of NEDD8-activating enzyme (NAE), blocks primary ciliary formation by inhibiting synthesis/assembly and promoting disassembly.
View Article and Find Full Text PDFAbnormal activation of neddylation modification and dysregulated energy metabolism are frequently seen in many types of cancer cells. Whether and how neddylation modification affects cellular metabolism remains largely unknown. Here, we showed that MLN4924, a small-molecule inhibitor of neddylation modification, induces mitochondrial fission-to-fusion conversion in breast cancer cells via inhibiting ubiquitylation and degradation of fusion-promoting protein mitofusin 1 (MFN1) by SCFβ-TrCP E3 ligase and blocking the mitochondrial translocation of fusion-inhibiting protein DRP1.
View Article and Find Full Text PDFBackground/aims: Chemoresistance is largely responsible for relapses of bladder cancer during clinical therapy. However, the molecular mechanisms involved in the chemoresistance of bladder cancer are unclear. Growing evidence supports the theory that microRNAs (miRNAs) play an important role in chemotherapeutic drug resistance because they are downregulated in many malignancies that have been implicated in the regulation of diverse processes in cancer cells.
View Article and Find Full Text PDFUBE2M and UBE2F are two family members of neddylation E2 conjugating enzyme that, together with E3s, activate CRLs (Cullin-RING Ligases) by catalyzing cullin neddylation. However, whether and how two E2s cross-talk with each other are largely unknown. Here, we report that UBE2M is a stress-inducible gene subjected to cis-transactivation by HIF-1 and AP1, and MLN4924, a small molecule inhibitor of E1 NEDD8-activating enzyme (NAE), upregulates UBE2M via blocking degradation of HIF-1α and c-JUN.
View Article and Find Full Text PDFThe Piezo1 channel is a mechanotransduction mediator, and Piezo1 abnormalities have been linked to several clinical disorders. However, the role of the Piezo1 channel in cystitis-associated bladder dysfunction has not been documented. The current study aimed to discover the functional role of this channel in regulating bladder activity during cyclophosphamide (CYP)-induced cystitis.
View Article and Find Full Text PDFRPS27L (ribosomal protein S27-like) is an evolutionarily conserved ribosomal protein and a direct p53 target. We recently reported that Rps27l disruption triggers ribosomal stress to induce p53, causing postnatal death, which can be rescued by Trp53 . Whether and how Rps27l modulates radiosensitivity is unknown.
View Article and Find Full Text PDFProstate cancer can progress from androgen dependence to androgen deprivation resistance with some unknown mechanisms. The current study aims to explore the possible role of pituitary tumor transforming gene1 (PTTG1) in castration-resistant prostate cancer (CRPC). Initially, we found that PTTG1 expression was significantly increased in androgen-independent prostate cancer cell lines PC3, DU145 and CRPC specimens compared with that in androgen-dependent prostate cancer cell line LNCaP and initial prostate cancer specimens.
View Article and Find Full Text PDFβ-TrCP and SKP2 are two well-studied F-box proteins, which often act as oncogenes. Whether and how they communicate with each other is unknown. Here we report that FBXW2, a poorly characterized F-box, is a substrate of β-TrCP1 and an E3 ligase for SKP2.
View Article and Find Full Text PDFBackground: SAG (Sensitive to Apoptosis Gene), also known as RBX2, ROC2 or RNF7, is a RING component of CRL (Cullin-RING ligase), required for its activity. Our recent study showed that SAG/RBX2 co-operated with Kras to promote lung tumorigenesis, but antagonized Kras to inhibit skin tumorigenesis, suggesting a tissue/context dependent function of Sag. However, it is totally unknown whether and how Sag would play in prostate tumorigenesis, triggered by Pten loss.
View Article and Find Full Text PDFSAG/RBX2 and RBX1 are two family members of RING components of Cullin-RING ligases (CRLs), required for their enzymatic activity. Previous studies showed that SAG prefers to bind with CUL5, as well as CUL1, whereas RBX1 binds exclusively to CULs1-4. Detailed biochemical difference between SAG and RBX1, and whether SAG mediates cross-talk between CRL5 and CRL1 are previously unknown.
View Article and Find Full Text PDFMLN4924, also known as pevonedistat, is the first-in-class inhibitor of NEDD8-activating enzyme, which blocks the entire neddylation modification of proteins. Previous preclinical studies and current clinical trials have been exclusively focused on its anticancer property. Unexpectedly, we show here, to our knowledge for the first time, that MLN4924, when applied at nanomolar concentrations, significantly stimulates in vitro tumor sphere formation and in vivo tumorigenesis and differentiation of human cancer cells and mouse embryonic stem cells.
View Article and Find Full Text PDFFBXW7 is a haploinsufficient tumor suppressor with loss-of-function mutations occurring in human cancers. FBXW7 inactivation causes genomic instability, but the mechanism remains elusive. Here we show that FBXW7 facilitates nonhomologous end-joining (NHEJ) repair and that FBXW7 depletion causes radiosensitization.
View Article and Find Full Text PDF