Publications by authors named "Mingji Jin"

Immune checkpoint inhibition (ICI) has become the mainstay of immunotherapy for the treatment of renal cell carcinoma (RCC). However, only a small portion of patients exhibit a positive response to PD-1/PD-L1 blockade therapy and the key reason is that RCC belongs to a vascular-rich tumor for promoting immunosuppression. Specifically, the dysfunctional tumor vasculature hinders effector T cell infiltration and induces immunosuppressive tumor microenvironment via the release of cytokine, which attenuates the therapeutic efficacy of ICI.

View Article and Find Full Text PDF

: Colorectal cancer (CRC) is one of the common malignant tumors. Chemotherapeutic agents represented by doxorubicin (DOX) are common adjuvant therapies for patients with advanced CRC. However, DOX suffers from dose-dependent cardiotoxicity and myelosuppression due to a lack of targeting and specificity, which severely limits its clinical application.

View Article and Find Full Text PDF

Colon cancer has a complex microenvironment and course, and conventional chemotherapy is hindered by low permeability and immunosuppression at the cancer site, leading to poor efficacy. Integrating intestinal environment regulation and molecularly targeted drugs are more attractive strategies. This study aimed to developed an oral colonic targeted delivery system (5-Flu/MET@MSNs/Ce6@HIL) using hyaluronic acid (HA) and inulin (IN) as key components.

View Article and Find Full Text PDF

Gliomas are a heterogeneous type of central nervous system tumor. The etiology of glioma formation remains elusive, with approximately 5% of gliomas being familial, underscoring the significance of understanding genetic susceptibility in glioma development. In this study, a dual germline PTCH2 mutation [Ser391*, Leu104Pro] was identified in a family with a history of glioma, and sequencing data from WES/SimcereDx Neuro-Onco 360 including 910 Chinese patients with glioma and 1666 patients with solid tumors were analyzed.

View Article and Find Full Text PDF

Protein corona (PC) formation confers novel biological properties to the original nanomaterial, impeding its uptake and targeting efficacy in cells and tissues. Although many studies discussing PC formation have focused on inert proteins that may inhibit the function of nanomaterials, some functional plasma proteins with intrinsic targeting capabilities can also be adsorbed to the surface of nanomaterials, with active ligand properties to improve the targeting ability. In this approach, nanomaterials are surface-engineered to promote the adsorption of specific functional plasma proteins that are directly targeted to transport nanomaterials to the target site.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a new strategy for breast cancer treatment that combines immunotherapy, chemotherapy, and photodynamic therapy (PDT) using a targeted nanoplatform.
  • This nanoplatform uses liposomes to deliver hypoxia-sensitive drugs like tirapazamine (TPZ) and a PD-L1 inhibitor (BMS-202) to enhance cancer cell death.
  • Studies have shown that this approach effectively reduces tumor growth and metastasis, offering a promising method for better breast cancer therapies.
View Article and Find Full Text PDF
Article Synopsis
  • * A novel self-targeting Metal-Organic Frameworks (MOFs) nanoplatform, MTX-PEG@TPL@ZIF-8, is designed to enhance TNBC treatment by remodeling the TME and boosting chemotherapy effectiveness.
  • * This MOF nanoplatform delivers medication directly to the tumor by exploiting the folate receptor, leading to better drug accumulation, reduced tumor invasion, and increased apoptosis of cancer cells, ultimately inhibiting metastasis and neovascularization.
View Article and Find Full Text PDF

We have developed an ovarian cancer-targeted drug delivery system based on a follicle-stimulating hormone receptor (FSHR) peptide. The lipophilic chemotherapeutic drug SN38 and the photosensitizer IR820 were loaded into the phospholipid bilayer of liposomes. The combination of chemotherapy and phototherapy has become a promising strategy to improve the therapeutic effect of chemotherapy drugs on solid tumors.

View Article and Find Full Text PDF
Article Synopsis
  • * The study highlights the limitations of current treatments and emphasizes the potential of a new oral colon-targeted drug delivery system (OCDDS) to improve CRC treatment outcomes.
  • * It reviews advances in various oral nano-formulation techniques, such as controlled-release and targeted delivery, and discusses the benefits and concerns related to these innovative treatments for CRC.
View Article and Find Full Text PDF

Wound healing involves distinct phases, including hemostasis, inflammation, proliferation, and remodeling, which is a complex and dynamic process. Conventional preparations often fail to meet multiple demands and provide prompt information about wound status. Here, a pH/ROS dual-responsive hydrogel (OHA-PP@Z-CA@EGF) was constructed based on oxidized hyaluronic acid (OHA), phenylboronic acid-grafted ε-polylysine (PP), chlorogenic acid (CA)-loaded ZIF-8 (Z-CA), and epidermal growth factor (EGF), which possesses intrinsic antibacterial, antioxidant, and angiogenic capacities.

View Article and Find Full Text PDF

With the rapid development of the economy and the demands of people's lives, the usage amount of polymer materials is significantly increasing globally. Chlorobenzenes (CB) are widely used in the industrial, agriculture and chemical industries, particularly as important chemical raw materials during polymers processes. CB are difficult to remove due to their properties, such as being hydrophobic, volatile and persistent and biotoxic, and they have caused great harm to the ecological environment and human health.

View Article and Find Full Text PDF

Trace elements (TEs) are essential for the treatment of rheumatoid arthritis (RA). This study aimed to prepare a TEs solution enriched with various organic states to evaluate its preventive, therapeutic effects, and mechanism of action in RA and to provide a treatment method for RA treatment. The TEs in natural ore were extracted and added to 0.

View Article and Find Full Text PDF

Modulating the inflammatory microenvironment can inhibit the process of inflammatory diseases (IDs). A tri-cross-linked inflammatory microenvironment-responsive hydrogel with ideal mechanical properties achieves triggerable and sustained drug delivery and regulates the inflammatory microenvironment. Here, this study develops an inflammatory microenvironment-responsive hydrogel (OD-PP@SeNPs) composed of phenylboronic acid grafted polylysine (PP), oxidized dextran (OD), and selenium nanoparticles (SeNPs).

View Article and Find Full Text PDF

Peptide‒drug conjugates (PDCs) are drug delivery systems consisting of a drug covalently coupled to a multifunctional peptide a cleavable linker. As an emerging prodrug strategy, PDCs not only preserve the function and bioactivity of the peptides but also release the drugs responsively with the cleavable property of the linkers. Given the ability to significantly improve the circulation stability and targeting of drugs and reduce the toxic side effects of drugs, PDCs have already been extensively applied in drug delivery.

View Article and Find Full Text PDF

The extremely low bioavailability of oral paclitaxel (PTX) mainly due to the complicated gastrointestinal environment, the obstruction of intestinal mucus layer and epithelium barrier. Thus, it is of great significance to construct a coordinative delivery system which can overcome multiple intestinal physicochemical obstacles simultaneously. In this work, a high-density PEGylation-based glycocholic acid-decorated micelles (PTX@GNPs) was constructed by a novel polymer, 9-Fluorenylmethoxycarbonyl-polyethylene glycocholic acid (Fmoc-PEG-GCA).

View Article and Find Full Text PDF

A keloid is a benign tumor manifested as abnormal fibroplasia on the surface of the skin. Curing keloids has become a major clinical challenge, and searching for new treatments and medications has become critical. In this study, we developed a LA67 liposome-loaded thermo-sensitive hydrogel (LA67-RL-Gel) with active targeting for treating keloids via peritumoral injection and explored the anti-keloid mechanism.

View Article and Find Full Text PDF

Prostate cancer (PC) is one of the common malignant tumors of the male genitourinary system. Here, we constructed PTX@ZIF-8, which is a metal-organic-framework-encapsulated drug delivery nanoparticle with paclitaxel (PTX) as a model drug, and further modified the synthesized peptide dimer (Di-PEG-COOH) onto the surface of PTX@ZIF-8 to prepare a nanotargeted drug delivery system (Di-PEG@PTX@ZIF-8) for the treatment of prostate cancer. This study investigated the morphology, particle size distribution, zeta potential, drug loading, encapsulation rate, stability, in vitro release behavior, and cytotoxicity of this targeted drug delivery system, and explored the uptake of Di-PEG@PTX@ZIF-8 by human prostate cancer Lncap cells at the in vitro cellular level, as well as the proliferation inhibition and promotion of apoptosis of Lncap cells by the composite nanoparticles.

View Article and Find Full Text PDF

Epigallocatechin gallate (EGCG) has attracted the increasing attention of many researchers, especially in the field of tumor therapy. However, EGCG has poor fat solubility, low stability, low bioavailability, and a high effective dose in vivo. Traditional drug delivery methods are difficult to deliver the water-soluble EGCG efficiently and in high doses to tumor sites.

View Article and Find Full Text PDF

Introduction: The blood-brain barrier (BBB) is a key obstacle to the delivery of drugs into the brain. Therefore, it is essential to develop an advanced drug delivery nanoplatform to solve this problem. We previously screened a small rabies virus glycoprotein 15 (RVG) peptide with 15 amino acids and observed that most of the RVG-modified nanoparticles entered the brain within 1 h of administration.

View Article and Find Full Text PDF

Combinations of two different therapeutic modalities of VEGF inhibitors against angiogenesis can cooperatively impede breast cancer tumor growth and enhance therapeutic efficacy. Itraconazole (ITZ) is a conventional antifungal drug with high safety; however, it has been repurposed to be a multi target anti-angiogenesis agent for cancer therapy in recent years. In the present study, composite nanoparticles co-loaded with ITZ and VEGF siRNA were prepared in order to investigate their anti-angiogenesis efficacy and synergistic anticancer effect against breast cancer.

View Article and Find Full Text PDF

Background: Oral chemotherapy is preferred for patients with cancer owing to its multiple advantages, including convenience, better patient compliance, and improved safety. Nevertheless, various physical barriers exist in this route that hamper the development of oral chemotherapeutic formulations, including destruction of drugs in the gastrointestinal tract (GIT), low permeability in enterocytes, and short residence time in the intestine. To overcome these limitations, it is necessary to design an efficient oral drug delivery system with high efficacy and improved safety.

View Article and Find Full Text PDF

Primary prostate cancer (PC) progresses to castration-resistant PC (CRPC) during androgen deprivation therapy (ADR) in early stages of prostate cancer. Thus, rather than blocking the androgen-related pathway further, docetaxel (DTX)-based therapy has become the most effective and standard first-line chemotherapy for CRPC. Although the therapy is successful in prolonging the survival of patients with CRPC, chemotherapy resistance develops due to the abnormal activation of the androgen receptor (AR) signaling pathway.

View Article and Find Full Text PDF

Colon cancer is emerging as one of the most prevalent cancers globally. Oral colonic drug delivery systems have attracted considerable attention in the treatment of orthotopic colon cancer due to their superior properties. However, the particularity and complexity of the gastrointestinal structure are a hindrance to the safe delivery of drugs to the target site of the colon tumor.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs), an important type of stromal cells in the tumor microenvironment (TME), are responsible for creating physical barriers to drug delivery and penetration in tumor tissues. Thus, effectively downregulating CAFs to destroy the physical barrier may allow enhanced penetration and accumulation of therapeutic drugs, thereby improving therapeutic outcomes. Herein, a matrix metalloproteinase (MMP)-triggered dual-targeting hybrid micelle-in-liposome system (RPM@NLQ) was constructed to sequentially deliver quercetin (Que) and paclitaxel (PTX) for fibrotic TME remodeling and chemotherapy potentiation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnsoi3jmskuannlgea66bvtdj3j13p4am): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once