A clear understanding of the structure-property relationship of intrinsically stretchable polymer semiconductors (ISPSs) is essential for developing high-performance polymer-based electronics. Herein, we investigate the effect of the fluorination position on the crystalline structure, charge-carrier mobility, and stretchability of polymer semiconductors based on a benzodithiophene--benzotriazole configuration. Although four different polymer semiconductors showed similar field-effect mobilities for holes (μ ≈ 0.
View Article and Find Full Text PDFDespite the emerging scientific interest in polymer-based stretchable electronics, the trade-off between the crystallinity and stretchability of intrinsically stretchable polymer semiconductors-charge-carrier mobility increases as crystallinity increases while stretchability decreases-hinders the development of high-performance stretchable electronics. Herein, a highly stretchable polymer semiconductor is reported that shows concurrently improved thin film crystallinity and stretchability upon thermal annealing. The polymer thin films annealed at temperatures higher than their crystallization temperatures exhibit substantially improved thin film stretchability (> 200%) and hole mobility (≥ 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2023
Organic electrochemical transistors (OECTs) have enormous potential for use in biosignal amplifiers, analyte sensors, and neuromorphic electronics owing to their exceptionally large transconductance. However, it is challenging to simultaneously achieve high charge carrier mobility and volumetric capacitance, the two most important figures of merit in OECTs. Herein, a method of achieving high-performance OECT with donor-acceptor conjugated copolymers by introducing fluorine units is proposed.
View Article and Find Full Text PDF