Publications by authors named "Minghui Ye"

The engineering of single-ion conductors (SICs) is a promising strategy to stabilize the anode/electrolyte interface in zinc-ion batteries. However, the commonly employed single-ion conductive solid or quasi-solid electrolytes often lead to a significant reduction in overall ionic conductivity, thereby impeding ion diffusion kinetics. Here, we propose a compromise strategy that effectively balances ionic conductivity and ion transference number.

View Article and Find Full Text PDF

Weak dipole interactions between highly symmetric H2O molecules and SO42- species are the root cause of unstable electric double layer (EDL), which triggers the hydrogen evolution reaction and Zn dendrite formation, significantly impeding the commercialization of aqueous zinc-ion batteries. Herein, we designed a microscopic split-phase interface (MSPI) by dual breaking of electron cloud and space structure symmetry to suppress interfacial side reactions and achieve uniform Zn deposition. The structurally asymmetric methylurea (MU) molecules possess both hydrophobic methyl and hydrophilic amino groups, which disrupt the continuity of H-bonding network and the aggregation state of H2O molecules, resulting in peculiar nanoscale core-shell-like clusters.

View Article and Find Full Text PDF

The limited cycling durability of Zn anode, attributed to the absence of a robust electrolyte-derived solid electrolyte interphase (SEI), remains the bottleneck for the practical deployment of aqueous zinc batteries. Herein, we highlight the role of local supersaturation in governing the fundamental crystallization chemistry of ZnSO(OH)⋅xHO (ZSH) and propose a subtle supersaturation-controlled morphology strategy to tailor the interphase chemistry of Zn anode. By judiciously creating local high-supersaturation environment with organic caprolactam to manipulate the precipitation manner of zinc sulfate hydroxide (ZSH), lattice-lattice matched heterogeneous nucleation of ZSH (001) and Zn (002) is realized in aqueous ZnSO, producing a dense, pseudo-coincidence interface capable of functioning as decent SEI.

View Article and Find Full Text PDF

Chilling stress seriously affects the growth and yield of tomato. Anthocyanin is a typical chilling-induced metabolite with strong antioxidant activity and photoprotective capacity. Here, we found that anthocyanin was also involved in ascorbic acid biosynthesis and glycolysis under chilling stress.

View Article and Find Full Text PDF

Interhalogen-involved aqueous Zn||halogen batteries (AZHBs) are latent high-energy systems for grid-level energy storage, yet usually suffer from poor high-rate endurability caused by the formation of "dead species". Herein, via an electrochemically-densified cathode-interface-reaction layer (CIRL), Zn||I-Br batteries involving interhalogen reactions between the I cathode and Br from the electrolytes are initially achieved with excellent high-rate endurability. Different from that in diluted electrolytes, the CIRL formed in Br-concentrated electrolyte is denser and water-lean, which enables halogen species conversion with a more rapid charge transfer and lower activation energy.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries have been impeded by the hydrogen evolution reaction (HER), uncontrolled zinc dendrites, and side reactions on the Zn anode. In this work, a Zn-polyphenol supramolecular network is rationally designed for stabilizing Zn anodes (ZPN@Zn) even at high current density. Theoretical calculations and experiments show that the zinc-polyphenol supramolecular layer effectively inhibits the hydrogen evolution reaction by capturing water molecules through strong hydrogen bonding networks while also facilitating the rapid replenishment of Zn ions at the interface through supramolecular anchoring.

View Article and Find Full Text PDF

Aqueous Zn ion batteries (AZIBs) are promising candidates of next-generation energy storage devices with high safety and theoretical capacity. However, the irreversibility of metallic Zn anode, attributed to dendrite growth and water decomposition, severely limits the cycling durability of AZIBs and restricts their further development. Herein, a facile surface engineering strategy is put forward to tackle the issue of poor reversibility of the Zn anode.

View Article and Find Full Text PDF

Rechargeable aqueous zinc iodine (Zn-I) batteries offer benefits such as low cost and high safety. Nevertheless, their commercial application is hindered by hydrogen evolution reaction (HER) and polyiodide shuttle, which result in a short lifespan. In this study, 1-(2-hydroxyethyl)imidazole (HEI) organic molecules featuring pyrrole-N groups are introduced as dually-functional electrolyte additives to simultaneously stabilize Zn anode and confine polyiodide through ion-dipole interactions.

View Article and Find Full Text PDF
Article Synopsis
  • * A novel approach combines a ferroelectric material (PbTiO) and a polyanionic polymer (AMPS-Zn) to stabilize zinc ion flow and reduce the anion concentration gradient, effectively addressing the SCL dilemma.
  • * Experimental results show that an asymmetric cell using this combined barrier exhibits long-lasting reversible performance, achieving up to 3450 hours of runtime and a remarkable capacity retention of 84.0% over 65,000 cycles.
View Article and Find Full Text PDF

Hydrogel electrolytes (HEs) hold great promise in tackling severe issues emerging in aqueous zinc-ion batteries, but the prevalent salting-out effect of kosmotropic salt causes low ionic conductivity and electrochemical instability. Herein, a subtle molecular bridging strategy is proposed to enhance the compatibility between PVA and ZnSO from the perspective of hydrogen-bonding microenvironment re-construction. By introducing urea containing both an H-bond acceptor and donor, the broken H-bonds between PVA and HO, initiated by the SO -driven HO polarization, could be re-united via intense intermolecular hydrogen bonds, thus leading to greatly increased carrying capacity of ZnSO.

View Article and Find Full Text PDF

Gradual disability of Zn anode and high negative/positive electrode (N/P) ratio usually depreciate calendar life and energy density of aqueous Zn batteries (AZBs). Herein, within original Zn-free hydrated electrolytes, a steric hindrance/electric field shielding-driven "hydrophobic ion barrier" is engineered towards ultradurable (002) plane-exposed Zn stripping/plating to solve this issue. Guided by theoretical simulations, hydrophobic adiponitrile (ADN) is employed as a steric hindrance agent to ally with inert electric field shielding additive (Mn) for plane adsorption priority manipulation, thereby constructing the "hydrophobic ion barrier".

View Article and Find Full Text PDF

Neutrophilic superhalide-anion-triggered chalcogen conversion-based Zn batteries, despite latent high-energy merit, usually suffer from a short lifespan caused by dendrite growth and shuttle effect. Here, a superhalide-anion-motivator reforming strategy is initiated to simultaneously manipulate the anode interface and Se conversion intermediates, realizing a bipolar regulation toward longevous energy-type Zn batteries. With ZnF chaotropic additives, the original large-radii superhalide zincate anion species in ionic liquid (IL) electrolytes are split into small F-containing species, boosting the formation of robust solid electrolyte interphases (SEI) for Zn dendrite inhibition.

View Article and Find Full Text PDF

Bipolar organic cathode materials (OCMs) implementing cation/anion storage mechanisms are promising for high-energy aqueous Zn batteries (AZBs). However, conventional organic functional group active sites in OCMs usually fail to sufficiently unlock the high-voltage/capacity merits. Herein, we initially report dynamically ion-coordinated bipolar OCMs as cathodes with chalcogen active sites to solve this issue.

View Article and Find Full Text PDF

AI is undeniably revolutionizing medical research and patient care across diverse fields. Chronic disease nursing care, a pivotal aspect of clinical management, has significantly reaped the benefits of AI across numerous dimensions. Understanding the operational principles of artificial intelligence before implementation is crucial, avoiding indiscriminate replacement of all tasks with AI.

View Article and Find Full Text PDF

The visual perception model is critical to autonomous driving systems. It provides the information necessary for self-driving cars to make decisions in traffic scenes. We propose a lightweight multi-task network (Mobip) to simultaneously perform traffic object detection, drivable area segmentation, and lane line detection.

View Article and Find Full Text PDF

Mild aqueous Zn batteries (AZBs) generally suffer a low-voltage/energy dilemma, which compromises their competitiveness for large-scale energy storage. Pushing Zn anode potential downshift is an admissible yet underappreciated approach for high-voltage/energy AZBs. Herein, with a mild hybrid electrolyte containing in situ-derived diluted strongly-coordinated Zn-cosolvent pairs, a considerable Zn anode potential downshift is initially achieved for high-voltage Zn-based hybrid batteries.

View Article and Find Full Text PDF

Although the meticulous design of functional diversity within the polymer interfacial layer holds paramount significance in mitigating the challenges associated with hydrogen evolution reactions and dendrite growth in zinc anodes, this pursuit remains a formidable task. Here, a large-scale producible zinc-enriched/water-lean polymer interfacial layer, derived from carboxymethyl chitosan (CCS), is constructed on zinc anodes by integration of electrodeposition and a targeted complexation strategy for highly reversible Zn plating/stripping chemistry. Zinc ions-induced crowding effect between CCS skeleton creates a strong hydrogen bonding environment and squeezes the moving space for water/anion counterparts, therefore greatly reducing the number of active water molecules and alleviating cathodic I attack.

View Article and Find Full Text PDF

The artificial solid electrolyte interphase (SEI) plays a pivotal role in Zn anode stabilization but its long-term effectiveness at high rates is still challenged. Herein, to achieve superior long-life and high-rate Zn anode, an exquisite electrolyte additive, lithium bis(oxalate)borate (LiBOB), is proposed to in situ derive a highly Zn -conductive SEI and to dynamically patrol its cycling-initiated defects. Profiting from the as-constructed real-time, automatic SEI repairing mechanism, the Zn anode can be cycled with distinct reversibility over 1800 h at an ultrahigh current density of 50 mA cm , presenting a record-high cumulative capacity up to 45 Ah cm .

View Article and Find Full Text PDF

Prediction of molecular parameters and material functions from the macroscopic viscoelastic properties of complex fluids are of great significance for molecular and formulation design in fundamental research as well as various industrial applications. A general learning method for computing molecular parameters of a viscoelastic constitutive model by solving an inverse problem is proposed. The accuracy, convergence and robustness of a deep neural network (DNN)-based numerical solver have been validated by considering the Rolie-Poly model for modeling the linear and non-linear steady rheometric properties of entangled polymer solutions in a wide range of concentrations.

View Article and Find Full Text PDF

A facile, universal surface engineering strategy is proposed to address the volume expansion and slow kinetic issues encountered by SiO/C anodes. A B-/F-enriched buffering interphase is introduced onto SiO/C by thermal treatment of pre-adsorbed lithium salts at 400 °C. The as-prepared anode integrates both high-rate performance and long-term cycling durability.

View Article and Find Full Text PDF

Background: Hong Kong catfish (Clarias fuscus) is an ecologically and economically important species that is widely distributed in freshwater regions of southern China. Hong Kong catfish has significant sexual growth dimorphism. The genome assembly of the Hong Kong catfish would facilitate study of the sex determination and evolution mechanism of the species.

View Article and Find Full Text PDF

Olfactory receptor (OR) genes are essential in the specific recognition of diverse stimuli in fish. In this study, a total of 141 OR genes were identified in silver sillago (), a marine fish sensitive to environmental stimuli, including 112 intact genes, 26 truncated genes, and three pseudogenes. A phylogenetic tree analysis elucidated that the OR genes of were classified into six groups, of which β, γ, δ, ε, and ζ groups belonged to type I, and the η group belonged to type II.

View Article and Find Full Text PDF

Aqueous rechargeable Mg batteries (ARMBs) usually fail from severe anode passivation, alternatively, executing quasi-underpotential Mg plating/stripping chemistry (UPMC) on a proper heterogeneous metal substrate is a crucial remedy. Herein, a stable UPMC on Zn substrate is initially achieved in new hydrated eutectic electrolytes (HEEs), delivering an ultralow UPMC overpotential and high energy/voltage plateau of ARMBs. The unique eutectic property remarkably expands the lower limit of electrochemical stability window (ESW) of HEEs and undermines the competition between hydrogen evolution/corrosion reactions and UPMC, enabling a reversible UPMC.

View Article and Find Full Text PDF

The anode-cathode interplay is an important but rarely considered factor that initiates the degradation of aqueous zinc ion batteries (AZIBs). Herein, to address the limited cyclability issue of V-based AZIBs, Al (SO ) is proposed as decent electrolyte additive to manipulate OH -mediated cross-communication between Zn anode and NaV O  ⋅ 1.5H O (NVO) cathode.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) have become an important supplementation to lithium-ion batteries. Unfortunately, the low capacity and inferior low-temperature performance of traditional hard carbon led to limited energy density and a range of applications of SIBs. Herein, we present high-performance SIBs via embedding FePS in graphitized porous N-doped carbon (FPS/GPNC) using coordination polymerization reaction.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsv45rjojne9kk65esgids2vntpjm3pn3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once