Publications by authors named "Minghui Xie"

The technology of induced pluripotent stem cells (iPSCs) has enabled the conversion of somatic cells into primitive undifferentiated cells via reprogramming. This approach provides possibilities for cell replacement therapies and drug screening, but the potential risk of tumorigenesis hampers its further development and application. How to generate differentiated cells such as valvular endothelial cells (VECs) has remained a major challenge.

View Article and Find Full Text PDF

Cold stress affects the growth, development, and yield of asparagus bean (Vigna unguiculata subsp. sesquipedalis). Mediator (MED) complex subunits regulate the cold tolerance of asparagus bean, but the underlying regulatory mechanisms remain unclear.

View Article and Find Full Text PDF

To compare the environmental impact and carbon footprint of gray hydrogen, blue hydrogen, and green hydrogen, inventories were obtained through literature research. Some inventories that were not available in China were obtained through foreign inventories combined with localized power conversion. The localized end-point destructive life cycle impact assessment method was used to calculate the environmental impact potential of the raw material acquisition, transportation, and hydrogen production stages of five hydrogen products.

View Article and Find Full Text PDF

Environmental factors such as light and temperature tightly regulate plant flowering time. Under stressful conditions, plants inhibit vegetative growth and accelerate flowering as an emergency response. This adaptive mechanism benefits the survival of species and enhances their reproductive success.

View Article and Find Full Text PDF

Cold temperatures negatively impact crop yield and quality, posing significant limitations to the advancement of the vegetable industry. MYB transcription factors are pivotal in enhancing plant resilience against various abiotic stresses, including low-temperature stress. Pepper ( L.

View Article and Find Full Text PDF

HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) play a crucial role in combination antiretroviral therapy (cART). To further enhance their antiviral activity and anti-resistance properties, we developed a series of novel NNRTIs, by specifically targeting tolerant region I of the NNRTI binding pocket. Among them, compound 9t-2 displayed excellent anti-HIV-1 potency against wild-type and prevalent mutant strains with EC values between 0.

View Article and Find Full Text PDF

Riptortus pedestris (Hemiptera: Alydidae) is a notable soybean pest, with diapause and non-diapause individuals showing different sensitivities to aggregation pheromones. This study aimed to investigate how R. pedestris detects aggregation pheromones through electroantennogram (EAG) and behavioral experiments, transcriptome sequencing and qRT-PCR, as well as competitive fluorescence-binding assay.

View Article and Find Full Text PDF

Under large current densities, the excessive hydroxide ion (OH) consumption hampers alkaline water splitting involving the oxygen evolution reaction (OER). High OH concentration (≈30 wt.%) is often used to enhance the catalytic activity of OER, but it also leads to higher corrosion in practical systems.

View Article and Find Full Text PDF

The advancement of intelligent road systems in developing countries poses unique challenges in identifying risk factors and implementing safety strategies. The variability of factors affecting crash injury severity leads to different risks across levels of roadway smartness, especially in hazardous terrains, complicating the adaptation of smart technologies. Therefore, this study investigates the temporal instability of factors affecting injury severities in crashes across various terrains, with a focus on the evolution of road smartness.

View Article and Find Full Text PDF
Article Synopsis
  • * A carbon dioxide emission model was created for China's iron and steel sector, revealing that the industry had a CO emission intensity of 2.33 tons CO/ton, with production stages being the main emission source (89.84% of total emissions).
  • * The analysis found that reducing fossil fuel combustion by 20% could decrease carbon emissions by 13.60%, highlighting the need for the Chinese government to promote energy-saving technologies and increase the use of scrap steel in production.
View Article and Find Full Text PDF

HIV-1 reverse transcriptase (RT) has received great attention as an attractive therapeutic target for acquired immune deficiency syndrome (AIDS), but the inevitable drug resistance and side effects have always been major challenges faced by non-nucleoside reverse transcriptase inhibitors (NNRTIs). This work aimed to identify novel chemotypes of anti-HIV-1 agents with improved drug-resistance profiles, reduced toxicity, and excellent druggability. A series of diarylpyrimidine (DAPY) derivatives were prepared structural modifications of the leads K-5a2 and .

View Article and Find Full Text PDF

Tissue-engineered heart valve (TEHV) has emerged as a prospective alternative to conventional valve prostheses. The decellularized heart valve (DHV) represents a promising TEHV scaffold that preserves the natural three-dimensional structure and retains essential biological activity. However, the limited mechanical strength, fast degradation, poor hemocompatibility, and lack of endothelialization of DHV restrict its clinical use, which is necessary for ensuring its long-term durability.

View Article and Find Full Text PDF
Article Synopsis
  • Road transport is the major contributor to greenhouse gas emissions in China's transportation sector, highlighting the need for sustainable practices.
  • The study develops a carbon footprint accounting model to evaluate the benefits of recycling spent ternary lithium-ion batteries, which will become increasingly urgent as new energy vehicles proliferate.
  • Results indicate that optimizing the power structure offers more significant carbon emission reductions (14%-19%) than optimizing transportation, while the regenerative product stage of recycling contributed the most to carbon reduction.
View Article and Find Full Text PDF

Heavy metal contamination in soils poses a significant environmental threat to human health. This study examines the effects of the chiral herbicide napropamide (NAP) on , focusing on growth metrics and cadmium (Cd) accumulation. NAP does not adversely affect plant growth compared to the control, whereas NAP significantly reduces root length and fresh weight.

View Article and Find Full Text PDF

Benzotriazole ultraviolet (UV) stabilizers (BUVs) have emerged as significant environmental contaminants, frequently detected in various ecosystems. While the toxicity of BUVs to aquatic organisms is well-documented, studies on their impact on plant life are scarce. Plants are crucial as they provide the primary source of energy and organic matter in ecosystems through photosynthesis.

View Article and Find Full Text PDF

Electrocatalytic reduction of nitrate to ammonia provides a green alternate to the Haber-Bosch method, yet it suffers from sluggish kinetics and a low yield rate. The nitrate reduction follows a tandem reaction of nitrate reduction to nitrite and subsequent nitrite hydrogenation to generate ammonia, and the ammonia Faraday efficiency (FE) is limited by the competitive hydrogen evolution reaction. Herein, we design a heterostructure catalyst to remedy the above issues, which consists of Ni nanosphere core and Ni(OH) nanosheet shell (Ni/Ni(OH)).

View Article and Find Full Text PDF

The HIV capsid (CA) protein is a promising target for anti-AIDS treatment due to its critical involvement in viral replication. Herein, we utilized the well-documented CA inhibitor PF74 as our lead compound and designed a series of low-molecular-weight phenylalanine derivatives. Among them, compound 7t exhibited remarkable antiviral activity with a high selection index (EC = 0.

View Article and Find Full Text PDF

Profound worldwide fleet electrification is thought to be the primary route for achieving the target of carbon neutrality. However, when and how electrification can help mitigate environmental impacts and carbon emissions in the transport sector remains unclear. Herein, the overall life-cycle environmental impacts and carbon saving range of two typical A-class vehicles in China, including electric vehicle (EV) and internal combustion engine vehicle (ICEV), were quantified by the life cycle assessment model for endpoint damage with localization parameters.

View Article and Find Full Text PDF

The senescence of aortic valve interstitial cells (VICs) plays a critical role in the progression of calcific aortic valve disease (CAVD). However, the precise mechanisms underlying the senescence of VICs remain unclear, demanding the identification of a novel target to mitigate this process. Previous studies have highlighted the anti-aging potential of morusin.

View Article and Find Full Text PDF

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are an important component of anti-acquired immunodeficiency syndrome treatment regimen. In the present work, with the previously reported compound K-16c as lead, a series of novel 2,4,5-trisubstituted pyrimidine derivatives were designed based on the cocrystal structure of K-16c/RT, with the aim to improve the anti-human immunodeficiency virus type-1 (HIV-1) activities and metabolic stability properties. Compound 11b1 exhibited the most potent antiviral activity against wild-type (WT) and a panel of single mutant HIV-1 strains (EC  = 2.

View Article and Find Full Text PDF

Valvular endothelial cells (VECs) derived from human induced pluripotent stem cells (hiPSCs) provide an unlimited cell source for tissue engineering heart valves (TEHVs); however, they are limited by their low differentiation efficiency and immature function. In our study, we applied unidirectional shear stress to promote hiPSCs differentiation into valvular endothelial-like cells (VELs). Compared to the static group, shear stress efficiently promoted the differentiation and functional maturation of hiPSC-VELs, as demonstrated by the efficiency of endothelial differentiation reaching 98.

View Article and Find Full Text PDF

Background: The mediator complex subunits (MED) constitutes a multiprotein complex, with each subunit intricately involved in crucial aspects of plant growth, development, and responses to stress. Nevertheless, scant reports pertain to the VunMED gene within the context of asparagus bean (Vigna unguiculata ssp. sesquipedialis).

View Article and Find Full Text PDF

The mass-transfer of oxygen in liquid phases (including in the bulk electrolyte and near the electrode surface) is a critical step to deliver oxygen to catalyst sites (especially immersed catalyst sites) and use the full capacity of oxygen reduction reaction (ORR). Despite the extensive efforts of optimizing the complex three-phase reaction interfaces to enhance the gaseous oxygen transfer, strong limitations remain due to oxygen's poor solubility and slow diffusion in electrolytes. Herein, a magnetic method for boosting the directional hydrodynamic pumping of oxygen toward immersed catalyst sites is demonstrated which allows the ORR to reach otherwise inaccessible catalytic regions where high currents normally would have depleted oxygen.

View Article and Find Full Text PDF

Bruchidius coreanus is a serious pest on Gleditsia sinensis Lam during seed storage, causing significant losses to their yield in southwest China. To gain insight into their behavioral mechanisms, the external morphology, ultrastructure, and distribution of sensilla on antennae, maxillary palps, and labial palps of both male and female B. coreanus were observed using a scanning electron microscope.

View Article and Find Full Text PDF

The steel industry is one of the most carbon-intensive industries in China. To analyze the carbon emission and carbon reduction potential of the steel industry in the life cycle, a carbon emission accounting model was built from the perspective of the life cycle. Taking the year 2020 as an example, an empirical analysis was carried out to predict and evaluate the carbon reduction potential of the steel industry in the life cycle by optimizing four variables, namely, scrap usage, fossil fuel combustion, electric power carbon footprint factor, and clean transportation proportion.

View Article and Find Full Text PDF