IEEE Trans Ultrason Ferroelectr Freq Control
October 2024
In this work, we investigate, for the first time, a low phase noise and wide tuning range voltage-controlled surface acoustic wave oscillator (VCSO) based on a lithium niobate on sapphire (LNOS) low-loss acoustic delay line (ADL). The thin-film LN/SiO2 bilayer acoustic waveguide, together with the single-phase unidirectional transducer (SPUDT) design, is key to attaining low insertion loss (IL) by enhancing energy confinement and directionality. Based on a high-performance ADL with an IL of only 5.
View Article and Find Full Text PDFLayered silicon (L-Si) anodes are celebrated for their high theoretical capacity but face significant challenges regarding safety and material purity during preparation. This study addresses these challenges by employing NHCl-CaSi as the raw material in a gas-solid de-alloying process, which enhances both safety and purity compared to traditional methods. The L-Si anodes produced demonstrate outstanding electrochemical performance, delivering a high reversible lithium storage capacity of 1497.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
October 2024
The need for wideband radio frequency front ends (RFFEs) with next-generation wireless protocols highlights the importance of electromechanical coupling [Formula: see text]. The hetero acoustic layered (HAL) surface acoustic wave (SAW) resonator with aluminum (Al) electrodes has shown superior performance compared to conventional SAW devices. Despite gold (Au) having excellent conductivity and stable properties, its high acoustic absorption and low phase velocity have made it less favorable for electrodes.
View Article and Find Full Text PDFAdvancing the high-voltage stability of the O3-type layered cathodes for sodium-ion batteries is critical to boost their progress in energy storage applications. However, this type of cathode often suffers from intricate phase transition and structural degradation at high voltages (i.e.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2023
In this study, we investigate the dispersive behavior of the electromechanical coupling coefficient ( [Formula: see text]) for shear-horizontal (SH) and Rayleigh surface acoustic wave (SAW) modes in a YX-LiNbO3 (LN)/SiO2/Si substrate across various wavelengths. Due to the difference in velocity dispersion between the SH and Rayleigh modes, mode coupling can be observed when these two modes operate at closely proximate frequencies, leading to a notable variation in their [Formula: see text]. With a careful design, SH and Rayleigh modes can be tuned to achieve a mode-decoupling state for enhancing [Formula: see text] of the SH-SAW and suppressing the presence of the Rayleigh mode in YX-LN/SiO2/Si.
View Article and Find Full Text PDFLayered cathode materials for sodium-ion batteries (SIBs) have gained considerable attention as promising candidates owing to their high capacity and potential for industrial scalability. Nonetheless, challenges arise from stress and structural degradation resulting from the deposition of larger ion radius species, leading to diminished cyclic stability and rate performance. In this study, we present a novel and straightforward strategy that combines the synergistic effects of an amorphous aluminum oxide coating and aluminum ion doping.
View Article and Find Full Text PDFThe low propagation loss of electromagnetic radiation below 1 MHz offers significant opportunities for low power, long range communication systems to meet growing demand for Internet of Things applications. However, the fundamental reduction in efficiency as antenna size decreases below a wavelength (30 m at 1 MHz) has made portable communication systems in the very low frequency (VLF: 3-30 kHz) and low frequency (30-300 kHz) ranges impractical for decades. A paradigm shift to piezoelectric antennas utilizing strain-driven currents at resonant wavelengths up to five orders of magnitude smaller than electrical antennas offers the promise for orders of magnitude efficiency improvement over the electrical state-of-the-art.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
July 2020
We present the first group of GHz low-loss acoustic radio frequency (RF) couplers using the fundamental symmetric (S0) mode in X-cut lithium niobate thin films. The demonstrated multistrip couplers (MSCs) significantly surpass the insertion loss (IL) and the operating frequency of the previous works in more compact structures, thanks to the large electromechanical coupling and low loss of S0 in lithium niobate. The design space of S0 MSCs is first explored.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
February 2020
We present the first group of GHz broadband SH0 mode acoustic delay lines (ADLs). The implemented ADLs adopt unidirectional transducer designs in a suspended X-cut lithium niobate thin film. The design space of the SH0 mode ADLs at GHz is first theoretically investigated, showing that the large coupling and sufficient spectral clearance to adjacent modes collectively enable the broadband performance of SH0 delay lines.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
August 2019
We present the first group of gigahertz S0 mode low loss and wideband acoustic delay lines (ADLs). The ADLs use a single-phase unidirectional transducers (SPUDT) design to launch and propagate the S0 mode in an X-cut lithium niobate thin film with large electromechanical coupling and low damping. In this work, the theoretical performance bounds of S0 mode ADLs are first investigated, significantly surpassing those in state-of-the-art.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
January 2015
A differentially piezoresistive (piezo-R) readout proposed for single-crystal-silicon (SCS) microelectromechanical systems (MEMS) resonators is implemented in a foundrybased resonator platform, demonstrating effective feedthrough cancellation using just simple piezoresistors from the resonator supports while maximizing their capacitively transduced driving areas. The SCS resonators are fabricated by a CMOS foundry using an SOI-MEMS technology together with a polysilicon refill process. A high electromechanical coupling coefficient is attained by the use of 50-nm transducer gap spacing.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
March 2012
Integrated CMOS-MEMS free-free beam resonator arrays operated in a standard two-port electrical configuration with low motional impedance and high power handling capability, centered at 10.5 MHz, have been demonstrated using the combination of pull-in gap reduction mechanism and mechanically coupled array design. The mechanical links (i.
View Article and Find Full Text PDF