Publications by authors named "Minghua Cui"

Objective To investigate the effect of baicalein (BAI) on autophagy of gastric cancer cell line BGC-823 cells by upregulating microRNA-7-5p (miR-7) and its possible mechanism. Methods The MTT method was used to screen the optimal drug concentration of BGC-823 cells treated with BAI. Real-time quantitative PCR was used to detect the transfection efficiency of BGC-823 cell line stably transfected with miR-7.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Caulophyllumrobustum Maxim extract (CRME), as recorded in traditional Chinese medicine, has the function of dispelling Feng, regulating Qi and dredging collaterals, promoting blood circulation and regulating menstruation, gingering up and relieving pain, clearing heat simultaneously detoxifying, lowering blood pressure and hemostasis. CRME is often used as Chinese materia medica preparation for rheumatoid arthritis, traumatic injury, irregular menstruation, abdominal pain, and hypertension treatment. Since gastric cancer (GC) existed as a health problem of human over the years, we are committed to the development of potential components of Chinese herbal medicine curing cancer, and we found CRME is expected to be one of the effective anti-tumor traditional Chinese medicine preparations.

View Article and Find Full Text PDF
Article Synopsis
  • - Endometrial cancer, primarily endometrioid adenocarcinomas, is increasingly common and poses significant health risks for women, especially young patients who require fertility preservation.
  • - Oral endocrine therapy, involving progestins, selective estrogen receptor antagonists, and aromatase inhibitors, is the main treatment but faces challenges like low drug solubility and effectiveness.
  • - Advances in nanotechnology are enabling the development of oral nano-formulations that improve drug delivery, protect against clearance, and enhance treatment for endometrioid endometrial cancer.
View Article and Find Full Text PDF

Background: Non-SMC condensin I complex subunit D2 (NCAPD2) belongs to the chromosomal structural maintenance family. While the different contribution of NCAPD2 to chromosome in mitosis have been thoroughly investigated, much less is known about the expression of NCAPD2 in pan-cancer. Thus, we used a bioinformatics dataset to conduct a pan-cancer analysis of NCAPD2 to determine its regulatory role in tumors.

View Article and Find Full Text PDF

Gynecological diseases are a series of diseases caused by abnormalities in the female reproductive organs or breast, which endanger women's fertility and even their lives. Therefore, it is important to investigate the mechanism of occurrence and treatment of gynecological diseases. Animal models are the main objects for people to study the development of diseases and explore treatment options.

View Article and Find Full Text PDF

Ovarian cancer is the most deadly malignancy among women, but its complex pathogenesis is unknown. Most patients with ovarian cancer have a poor prognosis due to high recurrence rates and chemotherapy resistance as well as the lack of effective early diagnostic methods. The tumor microenvironment mainly includes extracellular matrix, CAFs, tumor angiogenesis and immune-associated cells.

View Article and Find Full Text PDF

Androgen exposure may be an important factor in promoting the development of polycystic ovary syndrome (PCOS) and disease progression. Bushen Huoxue Formula (BHF), a traditional Chinese medicine, is prescribed in clinical settings as a PCOS remedy, albeit with unclear pharmacological effects on granulosa cells. The present research explores potentially advantageous BHF impacts and whereby BHF alleviates dehydroepiandrosterone (DHEA)-induced inflammation and endocrine disruption.

View Article and Find Full Text PDF
Article Synopsis
  • HSDL2 is a key regulator in cancer, particularly cervical cancer, where its overexpression is linked to disease progression and metastasis.
  • The study suggests HSDL2 could serve as a new marker for early diagnosis of cervical cancer.
  • HSDL2 contributes to cancer development by promoting cell proliferation, invasion, and migration, and it is also involved in lipid metabolism, indicating its potential as a therapeutic target.
View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) is a malignant tumor that arises from the epithelial cells of the bile duct and is notorious for its poor prognosis. The clinical outcome remains disappointing, and thus more effective therapeutic options are urgently required. Cordycepin, a traditional Chinese medicine, provides multiple pharmacological strategies in antitumors, but its mechanisms have not been fully elucidated.

View Article and Find Full Text PDF

Background & Aims: Primary hepatic cancer (PHC) is a common malignant tumor and the third most frequent cause of cancer-related death worldwide. However, the molecular mechanisms underlying hepatic cancer remain unknown. is considered a biomarker of cancer as it can facilitate tumor progression.

View Article and Find Full Text PDF

This study focused on the expression of mortalin in colorectal cancer (CRC). Mortalin activated the Wnt/β-catenin pathway to accelerate cell proliferation and the epithelial-mesenchymal transition (EMT) program. Data from online databases displayed that the expression of mortalin was high in CRC, which was further validated using clinical specimens.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an incurable, progressive neurodegenerative disease whose pathogenesis cannot be defined by one single element but consists of various factors; thus, there is a call for alternative approaches to tackle the multifaceted aspects of AD. Among the potential alternative targets, we aim to focus on glutaminyl cyclase (QC), which reduces the toxic pyroform of β-amyloid in the brains of AD patients. On the basis of a putative active conformation of the prototype inhibitor , a series of N-substituted thiourea, urea, and α-substituted amide derivatives were developed.

View Article and Find Full Text PDF

The mechanistic target of rapamycin complex (mTORC1) is a signaling hub on the lysosome surface, responding to lysosomal amino acids. Although arginine is metabolically important, the physiological arginine sensor that activates mTOR remains unclear. Here, we show that transmembrane 4 L six family member 5 (TM4SF5) translocates from plasma membrane to lysosome upon arginine sufficiency and senses arginine, culminating in mTORC1/S6K1 activation.

View Article and Find Full Text PDF

Glutamyl cyclase (QC) is a promising therapeutic target because of its involvement in the pathogenesis of Alzheimer's disease. In this study, we developed novel QC inhibitors that contain 3-aminoalkyloxy-4-methoxyphenyl and 4-aminoalkyloxyphenyl groups to replace the previously developed pharmacophore. Several potent inhibitors were identified, showing IC values in a low nanomolar range, and were further studied for in vitro toxicity and in vivo activity.

View Article and Find Full Text PDF

The primary goal of rational drug discovery is the identification of selective ligands which act on single or multiple drug targets to achieve the desired clinical outcome through the exploration of total chemical space. To identify such desired compounds, computational approaches are necessary in predicting their drug-like properties. G Protein-Coupled Receptors (GPCRs) represent one of the largest and most important integral membrane protein families.

View Article and Find Full Text PDF

Pyroglutamate-modified amyloid β peptides (pGlu-Aβ) are highly neurotoxic and promote the formation of amyloid plaques. The pGlu-Aβ peptides are generated by glutaminyl cyclase (QC), and recent clinical studies indicate that QC represents an alternative therapeutic target to treat Alzheimer's disease (AD). We have previously developed a series of QC inhibitors with an extended pharmacophoric scaffold, termed the Arg-mimetic D-region.

View Article and Find Full Text PDF

The DJ-1 protein engages in diverse cellular and pathological processes, including tumorigenesis, apoptosis, sperm fertilization, and the progression of Parkinson's disease (PD). The functional dimeric form of DJ-1 transforms into non-functional filamentous aggregates in an inorganic phosphate (P)-dependent manner in vitro. Here, we demonstrated that P and reactive oxygen species (ROS) induce DJ-1 aggregation in Neuro2A and SH-SY5Y cells.

View Article and Find Full Text PDF

Potent and selective A adenosine receptor (AR) agonists were identified by the replacement of 4'-oxo- or 4'-thionucleosides with bioisosteric selenium. Unlike previous agonists, 4'-seleno analogues preferred a glycosidic syn conformation and South sugar puckering, as shown in the X-ray crystal structure of 5'-N-methylcarbamoyl derivative 3p. Among the compounds tested, N-3-iodobenzyl analogue 3d was found to be the most potent AAR full agonist (K = 0.

View Article and Find Full Text PDF

Glutaminyl cyclase (QC) has been implicated in the formation of toxic amyloid plaques by generating the N-terminal pyroglutamate of β-amyloid peptides (pGlu-Aβ) and thus may participate in the pathogenesis of Alzheimer's disease (AD). We designed a library of glutamyl cyclase (QC) inhibitors based on the proposed binding mode of the preferred substrate, Aβ. An in vitro structure-activity relationship study identified several excellent QC inhibitors demonstrating 5- to 40-fold increases in potency compared to a known QC inhibitor.

View Article and Find Full Text PDF

Cancer is considered as one of the world's leading causes of morbidity and mortality. Over the past four decades, spectacular advances in molecular and cellular biology have led to major breakthroughs in the field of cancer research. However, the design and development of anticancer drugs prove to be an intricate, expensive, and time-consuming process.

View Article and Find Full Text PDF

Capsaicin is the most predominant and naturally occurring alkamide found in Capsicum fruits. Since its discovery in the 19th century, the therapeutic roles of capsaicin have been well characterized. The potential applications of capsaicin range from food flavorings to therapeutics.

View Article and Find Full Text PDF

We report the synthesis of novel 3-substituted 5-benzylidene-1-methyl-2-thiohydantoins 3, and their biological evaluation using NADPH oxidase (NOX) 1 and 4. Based on structural and pharmacophore analyses of known inhibitors such as hydroxypyrazole 2, we envisioned interesting 2-thiohydantoin compounds, 3-substituted 5-benzylidene-1-methyl-2-thiohydantoins 3 that would be expected to well match the structural features in 2. Efficient synthesis of eighteen target compounds 3 were achieved through the synthetic pathway of 4→11→3, established after consideration of several plausible synthetic pathways.

View Article and Find Full Text PDF

Transient receptor potential (TRP) channels belong to a superfamily of sensory-related ion channels responding to a wide variety of thermal, mechanical, or chemical stimuli. In an attempt to comprehend the piquancy and pain mechanism of the archetypal vanilloids, transient receptor potential vanilloid (TRPV) 1 was discovered. TRPV1, a well-established member of the TRP family, is implicated in a range of functions including inflammation, painful stimuli sensation, and mechanotransduction.

View Article and Find Full Text PDF

A series of 2-substituted 4-(trifluoromethyl)benzyl C-region analogs of 2-(3-fluoro-4-methylsulfonamidophenyl)propanamides were investigated for hTRPV1 antagonism. The analysis indicated that the phenyl C-region derivatives exhibited better antagonism than those of the corresponding pyridine surrogates for most of the series examined. Among the phenyl C-region derivatives, the two best compounds 43 and 44S antagonized capsaicin selectively relative to their antagonism of other activators and showed excellent potencies with K(i(CAP))=0.

View Article and Find Full Text PDF