Publications by authors named "Minghong Geng"

Atherosclerosis is an inflammatory disease of the arterial wall, which involves endothelial cells and immune cells. Endothelial dysfunction has been considered an important step in the initiation of the disease. TIPE1 is a newly identified protein of the TIPE family, and plays a vital role in inflammation and tumorigenesis.

View Article and Find Full Text PDF

Non-Hodgkin's lymphoma (NHL), which includes diffuse large B-cell lymphoma (DLBCL) and peripheral T-cell lymphoma, is a refractory malignant tumor originated from the lymphatic system. TNFAIP8L2 (TIPE2 or tumor necrosis-alpha-induced protein-8 like 2) is a negative regulator for inflammation and an inhibitor for carcinogenesis. However, whether TIPE2 plays a role in lymphomagenesis is unknown.

View Article and Find Full Text PDF

Proliferation of vascular smooth muscle cells (VSMCs) plays an important role in restenosis, a disease characterized by smooth muscle cell hyperplasia and neointimal formation. How proliferation signals are controlled to avoid restenosis is not fully understood. Here we report that TIPE2, the tumor necrosis factor (TNF) α-induced protein 8-like 2 (TNFAIP8L2), suppresses injury-induced restenosis by inhibiting VSMCs proliferation.

View Article and Find Full Text PDF

TIPE2, the tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TNFAIP8L2), plays an essential role in maintaining immune homeostasis. It is highly expressed in macrophages and negatively regulates inflammation through inhibiting Toll-like receptor signaling. In this paper, we utilized RAW264.

View Article and Find Full Text PDF

Phenotypic switching of vascular smooth muscle cells (VSMCs) is known to play a key role in the development of atherosclerosis. However, the mechanisms that mediate VSMC phenotypic switching are unclear. We report here that TIPE2, the tumor necrosis factor (TNF) α-induced protein 8-like 2 (TNFAIP8L2), plays an atheroprotective role by regulating phenotypic switching of VSMCs in response to oxidized low-density lipoprotein (ox-LDL) stimuli.

View Article and Find Full Text PDF